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Samenvatting

Het prijzen van opties op meerdere aandelen met

behulp van dunne roosters.

Coenraad Cornelis Willem Leentvaar

In tegenstelling tot standaard opties, zijn opties op een mandje met aande-
len gebaseerd op meerdere onderliggende aandelen. Dit fenomeen maakt het
bepalen van de optieprijs tot een grotere uitdaging. Een van de belangrijkste
problemen is de stijgende probleemdimensionaliteit. Bij het stijgen van de
dimensionaliteit, neemt de complexiteit van het onderliggende probleem ex-
ponentieel toe, omdat het aantal onbekenden dat opgelost dient te worden
exponentieel groeit. Huidige computersystemen kunnen niet overweg met
een dergelijk grote hoeveelheid data.

Teneinde het meerdimensionale optieprobleem op te lossen, moet er een
geavanceerde numerieke oplostechniek gevonden worden. Een van de tech-
nieken is de zogeheten dunne roostertechniek. Deze techniek splitst het pro-
bleem op in een substantieel aantal deelproblemen van een lagere complexi-
teit, die allen hanteerbaar zijn voor een modern computersysteem. Omdat
ieder deelprobleem dat uit deze splitsing ontstaat onafhankelijk van ieder
ander deelprobleem is, leent de dunne rooster techniek zich optimaal voor
parallellisatie. Dat wil zeggen dat in het optimale geval alle deelproblemen
simultaan opgelost kunnen worden. Echter, gezien de dimensionaliteit, kan
een deelprobleem nog steeds te groot zijn. In dat geval dient dat deelpro-
bleem verder geparallelliseerd te worden.

De dunne rooster methode kan niet straffeloos worden toegepast. De
beperkingen aan de toepasbaarheid van de dunne rooster methode liggen
in de begrensdheid van de gemengde afgeleiden van de oplossing van het
probleem. Omdat de eindvoorwaarde van vele optieprijsproblemen niet dif-
ferentieerbaar is, dient met deze beperking zorgvuldig te worden omgegaan.

In de eerste oplosmethode in dit proefschrift, wordt aan de hand van
experimenten aangetoond dat zonder gebruik te maken van geavanceer-
de roostertransformatietechnieken, een partiële differentiaal vergelijking in
combinatie met dunne roosters niet tot een gewenst convergentieresultaat
leidt. Indien een coördinatentransformatie wordt toegepast, verbetert dit
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resultaat aanzienlijk. De coördinatentransformatie dient er voor de niet-
differentieerbaarheid in de eindvoorwaarde langs een roosterlijn te leggen.
Echter, niet alle prijzen van opties op meerdere aandelen kunnen voldoen-
de nauwkeurig bepaald worden met een coördinatentransformatie. Soms is
transformatie niet nodig, zoals bij opties die gebaseerd zijn op het best of
slechtst presterend aandeel. Deze optiecontracten hebben een eindvoorwaar-
de die automatisch langs een roosterlijn ligt. Omdat het niet eenvoudig is
om passende randvoorwaarden voor dit probleem te definiëren, is voor het
prijzen van deze opties gebruik gemaakt van de tweede, alternatieve metho-
de in het proefschrift. Deze methode is gebaseerd op het bepalen van een
meervoudige integraal die voortkomt uit de risicovrije verwachtingswaarde
van een optie. De integraal kan zeer efficiënt doorgerekend worden met
behulp van een meervoudige discrete Fouriertransformatie.

De snelle Fourier transformatie is een efficiënt algoritme om de discre-
te Fourier transformatie te berekenen. Dit algoritme is ook de basis voor
een algoritme voor het parallel uitrekenen van de transformatie, door het
probleem op te splitsen in stukken. In dit proefschrift is een volledig commu-
nicatievrij parallel algoritme ontwikkeld dat ervoor zorgt dat het probleem
op een slimme manier wordt gesplitst. In combinatie met de dunne roos-
termethode, kunnen hier voldoende nauwkeurige resultaten worden behaald
voor hoogdimensionale problemen.
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Summary

Pricing multi-asset options with sparse grids.

Coenraad Cornelis Willem Leentvaar

Multi-asset options are based on more than one underlying asset, in contrast
to standard vanilla options. A very significant problem within the pricing
techniques for multi-asset options is the curse of dimensionality. This curse
of dimensionality is the exponential growth of the complexity of the prob-
lem when the dimensionality increases, because the number of unknowns to
solve simultaneously grows exponentially. Modern computer systems cannot
handle this huge amount of data.

In order to handle the multi-dimensional option pricing problem, the
curse of dimensionality has to be dealt with. The sparse grid solution tech-
nique is one of the key techniques to do this. The sparse grid technique
divides the original problem into many smaller sized sub-problems, which
can be handled efficiently on a modern computer system. Because every
sub-problem is independent of all others, this technique is parallelisable at
a high efficiency rate. This means, that every sub-problem can be solved
simultaneously. However, because of the dimensionality, the size of the sub-
problems may remain too large to solve and should be parallelised further.

The main restriction to the application of the sparse grid method is that
the mixed derivative of the solution of a multi-dimensional option pricing
problem has to be bounded. Because of the typical non-differentiability of
the final condition of the option pricing problem, this restrictions has to be
taken seriously.

In the first part of this thesis, it is shown, experimentally, that indeed the
sparse grid technique does not lead to a satisfactory accuracy without the use
of advanced techniques. If a coordinate transformation is used, the accuracy
increases significantly. This transformation aligns the non-differentiability
along a grid line.

Coordinate transformations are not applicable to any type of multi-asset
option, which seriously restricts the sparse grid solution technique for real
life financial applications. Sometimes, however, it is not necessary to use
it, because the non-differentiability is already aligned with grid line. These
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types of options are the options based on the best or worst performing un-
derlying asset. The boundary conditions of these contracts are unknown
en henceforth these options are computed and analysed with a second al-
ternative method in this thesis. This method arises from the risk-neutral
expectation valuation of the final condition which can be written as a multi-
dimensional integral over the transition density. By use of a discrete Fourier
transform, we can solve this integral efficiently.

The fast Fourier transform is a fast algorithm to compute the discrete
Fourier transform. This algorithm serves as the basis for a sophisticated al-
gorithm to parallelise the computation of the discrete Fourier transform, by
dividing the transform in several parts. In this thesis, a complete parallel al-
gorithm which does not require communication between the sub-problems is
developed, which subdivides the problem in a sophisticated way. In combina-
tion with the sparse grid technique, the numerical results have a satisfactory
accuracy.
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Preface

In the last twenty years of the 20th century, financial derivative products
have become increasingly important in the world of finance. Many different
derivatives are traded over all major stock exchanges in the world. Typical
examples of derivatives are options, swaps, futures, forward contracts and
many others. We have now reached the stage where anyone in finance needs
the knowledge of how derivatives work, how they are used and priced.

Derivatives can be defined as financial instruments whose value depends
on the value of other underlying variables. These underlying variables are
also tradable, but they are of a more basic type than the derivatives, al-
though derivative contracts with other derivatives as underlying do indeed
exist. In far the most examples of derivatives, the underlying variable is the
price of an asset. A stock option, for example, is a derivative contract with
the price of the stock as underlying. But derivatives can be based on almost
every variable, for example the amount of sunshine in a popular region of
Spain [29].

Options occur in many forms. Examples are vanilla options, barrier
options, digital options and multi-asset options. The basic example of an
option is the vanilla option. An option contract is an agreement between a
buying party (the holder) and a selling party (the underwriter). The holder
of the option contract has no obligation to use his option contract, whereas
the underwriter is obliged to agree with the holder if the holder uses the
option contract.

A simple example of a vanilla option is the European call option on
a stock. A call option gives the holder the right to buy the stock at a
prescribed moment in the future, the maturity date, for a prescribed price,
the strike price. Because the holder has the right to use his option, he can
decide what to do at maturity. The use of the right prescribed in the option
contract is called exercising the option. Basically, two scenarios may occur
at the maturity date. First, the price of the stock is less than the strike price.
Then, if the holder exercises his option, he buys a stock for an amount equal
to the strike price. This is not in his favour, because the holder may buy
the same stock on the stock exchange for a smaller amount. Contrarily, if
the stock price is above the strike price, then the holder can make a profit
if he exercises his option. This kind of option trading is called speculating.
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A second example of trading options, is hedging. Suppose an investor
possesses a stock and he expects a decrease of the stock price. Then he
may buy a European put option, which gives the holder the right to sell his
stock for the strike price. If the stock price goes down below the strike, the
holder uses the put option to sell his stock for the strike price. Otherwise,
the holder has a stock in his possession with a higher price. This type of
trading, hedging, is used to reduce the risk.

Another group of option traders are the so-called arbitrageurs. These
persons may buy the same option contracts on different stock exchanges
with different currencies (for example in Amsterdam and in London). Then
if the currency rate fluctuates, the options at either side of the North-Sea
can be cheaper. The arbitrageur can sell the cheaper options at the other
stock exchange and he will make a risk-free profit. This is called arbitrage.
Arbitrage cannot last for long, because the forces of supply and demand will
cause the currency rate between the Sterling and the Euro to change.

We already discussed the put and call options. There is no greater
distinction in the class of options than between these two options. Another
distinction is the time point of exercising the option. A European contract
can only be exercised at the end of the lifetime of the option, while the
American option can be exercised on at any time point prior to the exercise
date (early exercise). In 1973, a paper from Fischer Black and Myron Scholes
appeared [8], which led to the famous Black-Scholes equation. In 1997, the
Nobel prize in economics was awarded for this work. This framework is
still in use nowadays as the basic fundamental understanding of the option
pricing theory, although the framework clearly has its drawbacks.

One of the exciting aspects is the creation of non-standard products by
financial engineers. These non-standard products, the so-called exotic op-
tions, are important for investors because these options are mostly more
profitable than the plain vanilla counterparts. Exotic options are basically
derived from the vanilla options, but they have some extra properties. For
example a barrier option may become worthless if the underlying stock price
hits a certain barrier, which means that the stock price crosses a certain
value. The vanilla options have well-defined properties and are traded ac-
tively. Their prices are quoted by supply and demand on stock exchanges
by regular brokers. The exotic options are traded in the over-the-counter
derivatives market.

Exotic options are developed because of numerous reasons. Sometimes
they meet a genuine hedging need in the market or there are other reasons
- e.g. tax, legal, accounting - to make exotic options attractive for financial
institutions. One type of exotic option that is traded also by regular brokers,
is the index option. This option makes the link between the options on
only one underlying variable to the options on more underlying variables.
The options on more than one underlying asset, the so-called multi-asset
options, are the topic of this thesis. There exist, for example, cross-currency
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options that involve the exchange of more than two currencies against a
base currency at expiration. The basket option buyer purchases the right to
receive designated currencies in exchange for a base currency, either at the
prevailing foreign exchange market rate or at a prearranged rate of exchange.
Multinational corporations with multi-currency cash flows frequently use
basket options because it is generally cheaper to buy an option on a basket
of currencies than to buy individual options on each of the currencies that
make up the basket.

Another type of a multi-asset option is a basket option. This type is
an option on a basket of stocks. For example a basket based on a stock of
Shell and a stock of Philips is an example of a two-asset basket option. For
a basket call option, if the value of the basket is above the strike price, it is
favourable to buy all the stocks in the basket. The price of a basket option is
usually cheaper than the two individual options, since the value of the option
is based on the average of the stocks. Furthermore, the transaction costs, are
based on one option in contrast to the two individual options. Other more
sophisticated options, for example, are rainbow options, i.e. options based
on the best performing stock, geometric options or highly exotic examples
with additional properties like barriers.

Financial institutions work with sophisticated software programs to cal-
culate the value of a portfolio with assets and options. Also options on
several assets attract big interest. To price these options partial differential
equations from computational finance may need to be solved. However, they
cannot yet be solved with a similar efficiency as the traditional options on a
single asset. At the same time, basket options lead to interesting challenging
questions in numerical mathematics. Two factors that determine the diffi-
culty of numerically pricing and hedging these options are the number of
underlying assets, i.e., the problem dimensionality and the so-called ’early
exercise’ possibility. For low-dimensional problems (fewer than four dimen-
sions) well-known classical discretisation techniques are an obvious choice
for solving the partial differential equations with methods from numerical
mathematics. These methods can cope well with early exercise and are rel-
atively fast. For higher dimensions (above ten dimensions), Monte Carlo
simulations are in principle adequate, but relatively slow and not very effi-
cient for American-style options. Nowadays, basket option pricing problems
between three and ten dimensions occur frequently.

The main goal of the research in this thesis was to find novel numerical
methods for solving the medium dimensional (3-10 dimensions) problems.
There is currently no numerical method that copes well with such prob-
lems. Notice that, without advanced numerical techniques, the solution of a
discrete five-dimensional partial differential equation, for example, with 32
points in each dimension will already give rise to 33 million computational
points each time step. The computational work is therefore huge for higher-
dimensional problems. For dimensions less than ten, however, it must still
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be possible to reduce the total number of computational points based on
the sparse grids technique and solve the discrete equations with the most
efficient solution methods on parallel computers.

Expertise from computer science in solving discrete partial differential
equations on parallel machines is necessary, when working with an extremely
large number of computational points. The ingredients for a breakthrough,
like accurate discretisation techniques, non-uniform sparse grids and fast
iterative solution methods, have been developed and used successfully in the
computational fluid dynamics (CFD) area, however, only for 3D problems.
These modern numerical techniques will enable to reduce the total number of
grid points and will also provide an accurate approximation of the derivatives
of the option value. These derivatives, called the Greeks, are of major
interest to financial engineers, as they indicate the sensitivity of a portfolio
under consideration.

In this thesis, two different numerical approaches to pricing options are
discussed and tested in combination with the sparse grid techniques de-
veloped in [10]. This technique breaks the curse of dimensionality [3] by
dividing the problem in a large number of significantly smaller-sized sub-
problems. This thesis shows the advantages and the drawbacks of the sparse
grid method in combination with the option pricing problem. This thesis
can therefore be seen as a detailed numerical study of combining existing
methods to reach the highest possible dimensionality.
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Chapter 1

Introduction

1.1 Motivation

The work in this thesis is a description of some pricing techniques for multi-
asset options under the Black-Scholes framework. The focus is on the meth-
ods and the results that they yield. We combine several different methods
together to improve the computational times as well as the accuracy and to
obtain higher levels of dimensionality. The curse of dimensionality is the
main course in the menu of this thesis, because it has a direct influence on the
maximum problem size and the computational time. This thesis leads the
reader from the classic stochastic derivation of the multi-dimensional Black-
Scholes equation to the computational science of high-dimensional problems
in terms of partial differential equations or multi-dimensional Fourier trans-
forms.

1.2 Overview

The thesis is divided into five chapters. The first chapter, viz: the introduc-
tion, presents the derivation of option pricing techniques and a description of
several option contracts. The derivation of the pricing techniques is done via
the risk-neutral valuation of the option price and via the risk-free portfolio
and Itô’s lemma. Both the partial differential and the integral approaches
are presented.

Chapters 2 and 3 present the numerical solution of the pricing problem
using a partial differential equation. Chapter 2 covers the numerical solution
of the single-asset problem. The discretisation of the derivatives is discussed
as well as grid stretching, an iterative method for pricing American style
options and interpolation techniques for discrete dividend. In Section 2.5 we
show at work an accurate method for pricing single-asset option contracts.

In Chapter 3, the PDE method for pricing options continues; however
we treat the multi-dimensional case there. The discretisation used in Chap-

1



Chapter 1. Introduction

ter 2 is extended to the general multi-dimensional problem using Kronecker
products. We prove that the Kronecker products can be used for each deriva-
tive and discretisation, if the discretised solution can be written as a linear
combination of the approximated solutions.

The curse of dimensionality is an important issue in this thesis and in
Section 3.3, the sparse grid technique for general multi-dimensional par-
tial differential equations is presented. The method can be used for high-
dimensional problems under some restrictions. For option pricing, we will
see that some restrictions get violated and therefore we have to use ad-
vanced coordinate transformations to obtain a good accuracy. These coor-
dinate transformations can be applied to basket options and we end with
the presentation of numerical results for basket options.

Chapter 4 contains the option pricing technique through a Fourier trans-
form. The Fourier transform is discretised and leads to the computation of
a multi-dimensional discrete Fourier transform (DFT). The DFT is com-
puted with the efficient fast Fourier transform (FFT). However, the curse of
dimensionality is still an issue and we discuss the possibilities of parallelisa-
tion of the DFT. In combination with the sparse grid technique, we find a
sophisticated algorithm to solve multi-dimensional option pricing problems.

Finally, in Chapter 5 , we draw the conclusions of this thesis and discuss
the possibilities of both methods. Furthermore some remarks about further
quantitative research are given.

1.3 Computational finance

1.3.1 Price processes

The derivation of the price and the derivative processes in this section are
based on [7]. The theory of financial derivatives is based on the behaviour
of the prices of their underlying assets. For example a price of a call option
increases with the price of the underlying asset. The question is: What
kind of process drives the price? First we define two types of processes:
deterministic processes and stochastic processes.

Definition 1.3.1. A price process B is said to be deterministic if it has the
dynamics

dB(t) = r(t)B(t)dt, (1.1)

where r(t) is a given deterministic function, dB(t) is the change of B in a
period of dt.

A typical example is the risk-free interest rate applied by a bank if the
money is put on an account. In contrast to a risk-free price process, a stock
price process can be modelled as:

dS̄(t) =
(
µ(t, S̄(t))− δ

)
S̄(t)dt + σ(t, S̄(t))S̄(t)dW̄ (t) (1.2)

2
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This process describes the change in the stock price dS̄(t) in terms of deter-
ministic drift part and a stochastic part. Here the functions µ(t, S̄(t)) and
σ(t, S̄(t)) are deterministic as well, but the term W̄ (t) is a Wiener process
or a geometric Brownian motion. The term δS̄dt is the dividend payment if
the underlying stock pays dividend. This dividend payment is independent
of time except through the dependence of S̄. The dividend yield, δ is defined
as the proportion of the asset paid out per unit time dt. If the stock price
does not fall down the amount δS̄dt, then a trader can make a risk-free
profit by buying the asset.This is an example of arbitrage.

Equation (1.2) is known as a stochastic differential equation. An impor-
tant case and also the key model in this thesis is the celebrated Black-Scholes
model:

Definition 1.3.2. The d−dimensional Black-Scholes model consists of d+1
assets with dynamics:

dB(t) = rB(t)dt (1.3)

dS̄i(t) = (µi − δi)S̄i(t)dt + σiS̄i(t)dW̄i(t), (1.4)

where r, µi, δi and σi are deterministic constants and
E{dW̄i(t)dW̄j(t)} = ρijdt represents the correlation between the stocks.

This model describes the behaviour of a multi-dimensional price process
when the constants are given. The constant µi is also called the drift term
and it incorporates the risk-free interest rate r. The deterministic constants
are a drawback of the model as many improvements of this model are made.
However, for multi-asset option pricing, this model is still in use.

The Wiener processes are taken on a real-world probability measure P .
To apply the Feynman-Kac̃ theorem for contingent claims (see next section),
the probability measure P is replaced by another probability measure Q in
such way that Si(t)

B(t) is a martingale with respect to the so-called Q probability
measure. The use of probability measure Q is also referred to the risk-
neutral valuation. In the risk-neutral world the stock price will have the
Q−dynamics. Secondly, a future stochastic payment would be equal to the
expected value of the payments discounted by the risk-free interest rate. In
this case we have Q = P . The Black-Scholes in the risk-neutral world reads:

Definition 1.3.3. The d−dimensional risk-neutral Black-Scholes model con-
sists of d assets with dynamics:

dSi(t) = (r − δi)Si(t)dt + σiSi(t)dWi(t), (1.5)

where r is the interest rate, δi is the continuous dividend yield and
E

Q (dWi(t)dWi(t)) = ρijdt represents the correlation between the stocks
w.r.t. the risk-neutral measure.

3
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1.3.2 Derivatives

Options on stocks or other types of products driven by the Black-Scholes
model are called derivatives of the stocks. Derivatives have a contract func-
tion, which is called Φ. A typical example of an option is a European call
option:

Definition 1.3.4. A European call option with strike price K and exercise
date T on one underlying asset is a contract defined as follows:

• The holder of the option has the right to buy the underlying stock S
for the exercise price K at the exercise date T from the underwriter
of the option.

• The holder has the right to buy the underlying asset at maturity date
T only, but is not obliged to buy the underlying stock.

The financial terminology of exercising the option means the execution of
the right of the option. The European call option is just one simple example
of an option contract. More contract functions are presented in Section 1.4.

The option contract stated in Definition 1.3.4 is a contingent claim:

Definition 1.3.5. Consider a price process with stocks, Si, as used in the
Black-Scholes model. A contingent claim with exercise date T (also called
T−claim) is a stochastic variable driven by the price process as defined in
Definition 1.3.3.

If at the exercise date the stock price is greater than K, a profit of S(T )−
K can be made by exercising the option and selling the stock immediately.
However, if S(T ) < K, then it is not profitable to exercise the option and
the value of the contingent claim is zero. In other words:

Φ(T, S(T )) = max{S(T )−K, 0}. (1.6)

Now, the question arises as to what the today’s price of the contingent claim
will be. This is the main topic of this thesis: finding a method to compute
the price of certain contingent claims. First of all, the pricing equation
should be known. The true value of the contingent claim is only known at
the end of the lifetime of the claim.

In Definition 1.3.3 the risk-neutral price process of the underlying stocks
is presented in the celebrated Black-Scholes model. Together with the prop-
erties of the contingent claim, the following definition can be postulated:

Definition 1.3.6. The risk-neutral price of the claim, Φ, on the underlying
stocks, Si, as in Definition 1.3.3 is given by a function, V (t, Si(t)):

V (t, Si) = e−r(T−t)
E

Q{Φ(T, Si(T ))}. (1.7)
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The economic background of Definition 1.3.6 is that the price is the ex-
pectation of the value of the contract at exercise date T and then discounting
it by the factor e−r(T−t). The expectation can be taken with respect to the
risk-neutral probability distribution:

E
Q{Φ(T, Si(T ))} =

∫

Rd

Φ(T, Si(T ))f(S(t)|S(T )))dS1(T ) . . . dSd(T ), (1.8)

with S(t) = [S1, . . . , Sd]
T . The probability density function f(S(t)|S(T ))

is here the log normal conditional distribution function, which means that
the logarithms of the stock prices are multivariate normally distributed with
correlation coefficients ρij and volatilities σi as given in Definition 1.4. The
expectation is the computation of the value of V at time t and asset prices
Si(t) when Si(T ) is given. This is called a transition density. This integral
representation forms the basis of the Fourier based pricing techniques, that
will be described in detail in Chapter 4

Chapters 2 and 3 cover the pricing technique using a partial differential
equation. The next theorem provides a link between the integral represen-
tation and the partial differential equation:

Theorem 1.3.7 (Feynman-Kac̃). Given the system of stochastic differential
equations:

dSi(t) = (r − δi)Si(t)dt + σiSidWi(t)

with E
Q{dWi(t)dWj(t)} = ρijdt and a contingent claim, V , such that

V (t, Si) = e−r(T−t)
E

Q{Φ(T, Si(T ))}

= e−r(T−t)

∫

Rd

Φ(T, Si(T ))f(S(t)|S(T )))dS1(T ) . . . dSd(T ),

with the sum of the first derivatives of the option square integrable. Then
the value, V (t, Si), of the contingent claim at time, t is the unique solution
of the final condition problem:





∂V

∂t
+

d∑

i=1

(r − δi)Si
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
− rV = 0

V (T, Si) = Φ(T, Si(T )),

(1.9)
with V (t, Si) : R

d
+ × R+ → R and ρii = 1.

For a proof see [7] or [35]. Equation (1.9) is a second order parabolic
partial differential equation in d S−dimensions and plus a time dimension.
The numerical solution of this type of equation is of our interest, as very
few problems admit an analytic solution. The main problems when solving
this equation are its dimensionality and the type of final condition.
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Equation (1.9) in one dimension is the celebrated Black-Scholes par-

tial differential equation:





∂V

∂t
+ (r − δ)S ∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0

V (T, S) = Φ(T, S(T )),
(1.10)

with Φ(T, S(T )) the contract function of an option.

Another result of the Feynman-Kac̃ Theorem 1.3.7, is that the solution
of (1.8) with Φ in equation (1.6) for a call option can be written as:

V (t, S) = Se−δ(T−t)N(d1)−Ke−r(T−t)N(d2) (1.11)

with

d1 =
lnS − lnK + (r − δ + 1

2σ
2)(T − t)

σ
√
T − t (1.12)

d2 =
lnS − lnK + (r − δ − 1

2σ
2)(T − t)

σ
√
T − t (1.13)

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2
dy. (1.14)

Figure 1.1 presents the contract function or payoff for a European call option
and the solution (1.11) is also presented for three different times to maturity.

1.4 Contract functions

We will now focus on the contract functions, Φ. They determine the type
of the option and thus also its price. We will distinguish between single-
asset and multi-asset options. Standard single-asset options like calls and
puts are traded on stock exchanges as the AEX in Amsterdam, Xetra DAX
in Frankfurt or CAC40 in Paris. Other options are often referred as exotic
options. The multi-asset option itself is also an exotic option contract. These
options are typically traded between banks, brokers and some industrial
customers. We will assume that all options considered in this thesis are
simple contingent claims in terms of Definition 1.3.5.

1.4.1 Single-asset contracts

Definition 1.3.4 is already a fine definition of a standard European call. The
definition of a put option is given in Definition 1.4.1.

Definition 1.4.1. A European put option with strike price K and exercise
date T on one underlying asset is a contract defined as follows:
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Figure 1.1: Contract function and exact solution for today’s price (t = 0)
of a European call option for three different exercise dates. K = 100, r =
0.06, δ = 0.02, σ = 0.25

• The holder of the option has the right to sell the underlying stock S
for the exercise price K at the exercise date T to the writer of the
option.

• The holder has the right to sell the underlying asset at maturity date
T only, but is not obliged to sell the underlying stock.

The contract function of a put option reads:

Φ(T, S(T )) = max{K − S(T ), 0}. (1.15)

The contract function for a put and the prices of the put option at different
maturity times are presented in Figure 1.2.

Put options are often bought when a speculator expects that the stock
price will go down. He will make a profit when he buys the option price for
S(T ) and sells it for K. Even if the holder of the option does not possess
any stock, he is allowed to buy this option and exercise it eventually. This
is called short selling. An analogous analytic solution for the European put
option is also available:

V (t, S) = Ke−r(T−t)N(−d2)− Se−δ(T−t)N(−d1), (1.16)

with d1, d2 and N(·) given in equations (1.12)-(1.14). Combining (1.11) and
(1.16) gives the put-call parity for European options:

Vp(t, S) = Ke−r(T−t) + Vc(t, S)− Se−δ(T−t). (1.17)
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Figure 1.2: Contract function and analytic solution for today’s price of
a European put option for three different exercise dates. K = 100, r =
0.06, δ = 0.02, σ = 0.25

where the subscript represents the type of the contract.
We can observe that the contract functions for both call option (1.6) and

(1.15) are non differentiable at S = K. This is a common property of con-
tract functions of options. However, contract functions with a discontinuity,
called digital options, also exist. We have:

Definition 1.4.2. A digital option with strike price, K, and exercise date,
T on one underlying asset is a contract defined by:

• The holder of the option has the right to exercise at the exercise date
T only.

• If the holder decides to exercise, he receives either a fixed amount V0,
if the contract type is a cash-or-nothing option or the asset, S, if
the contract is a asset-or-nothing.

For both types of digital options, put and call versions exist. An analytic
solution exists [29, 18, 57] for these four options. Table 1.1 presents the
analytic solutions together with the contract functions Φ. The contract
function and the solutions for three different maturity times of a cash-or-
nothing call option are plotted in Figure 1.3.

Other examples of single-asset options are:

• Barrier options [18]: There are several types, but the main property
is that the option becomes worthless if the asset price passes a barrier
at B or it stays worthless if it does not pass the barrier.
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Table 1.1: Contract functions and analytic solutions of four different types
of digital options. d1, d2 and N(·) as in equations (1.12)-(1.14).

Cash-or-nothing Call Put

Φ(T, S(T ))

{
V0 S(T ) > K

0 S(T ) < K

{
0 S(T ) > K

V0 S(T ) < K

V (t, S) V0e
−r(T−t)N(d2) V0e

−r(T−t)N(−d2)

Asset-or-nothing Call Put

Φ(T, S(T ))

{
S(T ) S(T ) > K

0 S(T ) < K

{
0 S(T ) > K

S(T ) S(T ) < K

V (t, S) Se−δ(T−t)N(d1) Se−δ(T−t)N(−d1)

• Asian options [57]: The option depends on functions of the average
asset price during the lifetime of the option.

• Compound option [52]: An option with an option as underlying.

• Spread options [29]. A linear combination of puts and calls or digitals
[37].

1.4.2 Multi-asset contracts

Efficient pricing of options that are dependent on more than one asset is the
core of this thesis. The holder of a multi-asset contract has the right to buy
a set of assets if the conditions are profitable. Such a set is often described
as a basket of assets and can even be a whole index. This class of basket
options can be described by a general equation for the contract function:

Φ(T,S(T )) = max

(
d∑

i=1

wiSi(T )−K, 0
)
, (1.18)

where K is the exercise price of the complete basket and wi the percentages
in the set of assets. The contract function of a basket put option is similar:

Φ(T,S(T )) = max

(
K −

d∑

i=1

wiSi, 0

)
(1.19)

These options are often traded because a basket option is cheaper than
the total of single-asset options on each particular asset [15]. The contract
functions of these options are plotted in Figure 1.4.

Other options similar to the basket options are:
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(a) Cash-or-nothing call
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(b) Cash-or-nothing put
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(c) Asset-or-nothing call
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(d) Asset-or-nothing put

Figure 1.3: Contract function and analytic solution for today’s price of
four different European digital options for three different exercise dates.
K = 100, r = 0.06, δ = 0.02, σ = 0.25, Q = 1

• Index options: The basket is now replaced by complete stock index
and every asset is an underlying. These options are often treated as a
single-asset option.

• Exchange options: The basket of this option contains two assets, with
w1 = −w2 and K = 0. In other words, this is an option which allows
the holder to exchange one asset for another.

• Cross-currency options: Options on one asset, but priced in different
currencies. With this option, the exchange rates are important.

Option on the geometric average of the assets

A multi-asset option contract based on the geometric average of the assets
has the nice property [4], that after a transformation, this contract can be
valuated with the one-dimensional equations (1.11) or (1.16). The geometric
average of the assets is defined as:

Ŝ =

d∏

j=1

S
1
d
j . (1.20)
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(a) Basket call, w1 = w2 = 0.5
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(b) Basket put, w1 = 0.3, w2 = 0.7

Figure 1.4: Contract function of the basket option with K = 100

If coordinate Ŝ is used in equation (1.9) then with

σ̂ =

√√√√ 1

d2

d∑

i=1

d∑

j=1

ρijσiσj, δ̂ =
1

d

d∑

i=1

(
δi +

1

2
σ2

i

)
− 1

2
σ̂2.

the single-asset pricing equation (1.10) can be used to compute the price of
the option on the geometric average. The contract functions of a call and a
put on the geometric average are presented in Figure 1.5.
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(a) Geometric call

0
50

100
150

200
250

300

0

100

200

300

0

10

20

30

40

50

60

70

80

90

100

S
2S

1

V

(b) Geometric put

Figure 1.5: Contract function of an option based on the geometric average
with K = 100.

Option on the maximum or minimum of assets

A type of multi-asset option, which can not be described by equation (1.18)
is the option on the maximum or minimum of assets. This option finds its
application in a wide variety of contingent claims. One example is the option
bond where payment at expiry can be chosen by the holder in a currency
from a list of currencies if all possibilities are available [47]. The pay-off of

11



Chapter 1. Introduction

a call (put) on the maximum of d risky assets reads:

Max call Φ(T,S(T )) = max{max{S1, S2, . . . , Sd} −K, 0}, (1.21)

Max put Φ(T,S(T )) = max{K −max{S1, S2, . . . , Sd}, 0} (1.22)

and of a call (put) on the minimum of d risky assets reads:

Min call Φ(T,S(T )) = max{min{S1, S2, . . . , Sd} −K, 0}, (1.23)

Min put Φ(T,S(T )) = max{K −min{S1, S2, . . . , Sd}, 0}. (1.24)

In Figure 1.6 the contract functions of these options are presented.
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(b) Put on maximum
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(c) Call on minimum
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(d) Put on minimum

Figure 1.6: Contract functions for 2D options on the maximum or minimum
of assets.

1.5 Risk-free portfolio and Greeks

The derivation of the famous Black-Scholes equation (1.9) or (1.10) can also
be done via an alternative route. This derivation is used in many references
like [52, 31, 57]. In this setting, it is straightforward to determine the hedge
parameters for the portfolio.

Consider again the risk-neutral Black-Scholes price process presented in
Definition 1.3.3:

dSi = (r − δi)Sidt + σiSidWi (1.25)

12



1.5. Risk-free portfolio and Greeks

and the value of a certain derivative V (t, S1, S2, . . . , Sd) dependent on the
time and the underlying assets Si. Then Itô’s lemma, which can be seen as
the stochastic counterpart of Taylor’s lemma, reads:

Theorem 1.5.1 (Itô). Given a vector of Wiener processes
W = (W1,W2, . . . ,Wd) and correlation coefficients ρij as given and let fur-
thermore the function V (t, S1.S2, . . . , Sd) be a stochastic process (1.5) w.r.t.
to the risk-neutral probability measure, then the differential of the function
V can be written as:

dV =




∂V

∂t
+

d∑

i=1

(r − δi)Si
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj



 dt

+
d∑

i=1

σiSi
∂V

∂Si
dWi.

(1.26)

Proofs of this famous theorem can be found in [7, 35].
Now, we set-up a portfolio, Π, containing one derivative (for example a

basket call option) and −∆i underlying assets Si. The value of this portfolio
reads:

Π = V −
d∑

i=1

∆iSi.

Basically the portfolio Π follows the same process as of the asset price S
and the Q−dynamics of the derivative V . The change in the value of the
portfolio is affected by the payment of the dividend yield. A continuous
dividend yield gives an amount δiSidt per time unit and since we have −∆i

assets Si in our portfolio, we have [52]:

dΠ = dV −
d∑

i=1

∆idSi −
d∑

i=1

∆iδiSidt. (1.27)

In other words, the value of the portfolio increases with
∑d

i=1 ∆iδiSidt dur-
ing its lifetime. We assume that ∆i is a fixed number within the time-interval
dt according to the Black-Scholes theory [8]. Now we substitute the differ-
ential (1.26) into dΠ (1.27):

dΠ = dV −
d∑

i=1

∆idSi −
d∑

i=1

∆iδiSidt

=




∂V

∂t
+

d∑

i=1

(r − δi)Si
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj



dt

+

d∑

i=1

σiSi
∂V

∂Si
dWi −

d∑

i=1

∆idSi −
d∑

i=1

∆iδiSidt,
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Chapter 1. Introduction

and substitute dSi from equation (1.25):

dΠ =




∂V

∂t
+

d∑

i=1

(r − δi)Si
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj



 dt

+

d∑

i=1

σiSi
∂V

∂Si
dWi −

d∑

i=1

∆i [(r − δi)Sidt + σiSidWi]−
d∑

i=1

∆iδiSidt.

To eliminate the risk from dΠ, we have to eliminate the term with dWi, so

we choose ∆i =
∂V

∂Si
. Then we have by rearranging terms:

dΠ =




∂V

∂t
−

d∑

i=1

δiSi
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj



 dt (1.28)

From an economical point of view [52], the return on the portfolio invested
in risk-free assets would see a increase of rΠdt in a time period dt. If the
right-hand side of (1.28) is larger than this amount, a trader can make a
guaranteed risk-free profit by borrowing an amount Π and invest it in the
portfolio. This is again an example of arbitrage. Conversely, if the right-
hand side is smaller the trader will go short on the portfolio and invest Π in
a risk-free bank account. Therefore, we need to have dΠ = rΠdt. Combining
the growth of the portfolio during dt with the portfolio change (1.28), we
find:

rΠdt =




∂V

∂t
−

d∑

i=1

δiSi
∂V

∂Si
+

1

2

d∑

i=1

d∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj



 dt. (1.29)

Substituting the value of the portfolio Π = V −∑d
i=1 ∆iSi and the value of

∆i in (1.29), we again obtain the Black-Scholes equation (1.9) after division
by dt.

The ∆i in the derivation of the Black-Scholes equation is known as a
hedge parameter and it is one of the Greeks. This parameter gives thus the
amount of assets to purchase in combination with an option to eliminate
the risk in the portfolio. The analytic solution value of ∆ for a single-asset
European call and put option by use of equation (1.11) or (1.16) reads:

∆c(t, S) = e−δ(T−t)N(d1) (1.30)

∆p(t, S) = e−δ(T−t) (N(d1)− 1) (1.31)

In Figure 1.7, the ∆ of a European call for different maturity times is pre-
sented.

Another hedge parameter which is important in finance is the Gamma,
Γ. This parameter is a measure to adjust the amount ∆ to maintain a
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Figure 1.7: Analytic solution of a ∆ of a European call option for three
different maturity times. K = 100, r = 0.06, δ = 0.02, σ = 0.25

risk-neutral portfolio. The version in the multi-asset case Γi,j is the second
derivative of the option price:

Γi,j =
∂2V

∂Si∂Sj
. (1.32)

It easily follows that the Γ for single-asset put and call options is equal:

Γp,c(t, S) =
e−

1
2
d2
1

σS
√

2π(T − t)
. (1.33)

In Figure 1.8, the gamma, Γ, for a European option with different maturity
times is presented.

1.6 Early exercise

In contrast to European options, which can only be exercised at the ma-
turity date T , American options can be exercised at any time prior to T .
Consequently, identifying the optimal exercise strategy is an integral part of
the valuation problem.

Let V (t, S) be the value of an American option with contract function
Φ(T, S(T ))) at exercise. The possibility of early exercise requires

V (t, S) ≥ Φ(S), ∀t ∈ [0, T ] and S ∈ [0,∞),
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Figure 1.8: Analytic solution of a Γ of a European call option for three
different maturity times. K = 100, r = 0.06, δ = 0.02, σ = 0.25

as otherwise a holder would immediately exercise this option [29, 52, 51],
and an arbitrage opportunity would exist.

To illustrate this, two different portfolios are constructed. The first
portfolio contains one European call option on a non-dividend paying stock
plus an amount of money Ke−rT . The second portfolio is only one asset
S0. In the first portfolio, the cash, if it is invested at the risk-free interest
rate, would grow to K in time T . If S(T ) > K, the option is exercised at
maturity and therefore the portfolio is worth S(T ). If S(T ) < K, the option
is worthless and the value of the portfolio is K. Hence at maturity time, the
value of the portfolio is max{ST ,K}.

The value of the second portfolio is worth ST at time T . We therefore
see that the value of the first portfolio is always larger than or equal to the
value of the second portfolio. In the absence of arbitrage opportunities, this
must be the same during the lifetime of the option:

V (t, S(t)) +Ke−r(T−t)
> S(t)⇔ V (t, S(t)) > S(t)−Ke−r(T−t). (1.34)

If the option is an American option, it is allowed to exercise the option
during its lifetime. To exercise the option during its lifetime the value of the
American call option is at least equal to the contract function:

V (t, S(t)) > S(t)−K.
Using the inequality from (1.34), we have:

V (t, S(t)) > S(t)−Ke−r(T−t)
> S(t)−K
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1.6. Early exercise

and we deduce that in the absence of dividends it is never optimal to exercise
early.

However, for a put option the solution is different. Again, we illustrate
this with two different portfolios. The first portfolio is a combination of a
European put on a non-dividend paying stock and one asset. The second
portfolio is an amount of cash equal toKe−rT . At maturity time the value of
the first portfolio equals K if ST < K, because the option will be exercised.
The value equals ST if ST > K, so again, the value of the first portfolio
at maturity time is max{S(T ),K}. The second portfolio would grow to an
amount K if it was invested at the risk-free interest rate. We deduce that
the value of the first portfolio is larger than or equal to the value of the
second portfolio and by the same arbitrage arguments, this holds as well
during the lifetime of the option. So we have:

V (t, S(t)) + S(t) > Ke−r(T−t) ⇔ V (t, S(t)) > Ke−r(T−t) − S(t). (1.35)

If it is an American option, it is possible to exercise early and we have:

V (t, S(t)) > K − S(t). (1.36)

From (1.35), we see that the price of the European option can be lower than
the contract function and consequently the price of an American option is
larger than a European option.

Mathematically, the valuation of the American option is similar to what
is known as solving a free boundary problem. The free boundary stock price
Sf (t), also called early exercise boundary, divides the (t, S) half strip into
two parts, namely the continuation region and the stopping region. The
continuation region {(t, S) ∈ [0, T ] × R+ : V (t, S) > Φ(T, S(T ))} is the
set of points (t, S) at which the option is worth more alive, whereas in the
stopping region {(t, S) ∈ [0, T ] × R+ : V (t, S) = Φ(T, S(T ))} early exercise
is advisable as the option is worth its contract function.

Under the Black-Scholes framework, the price V (t, S), satisfies, in the
continuation region

V (t, S) > Φ(T, S(T )),
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S ∂V

∂S
− rV = 0;

or in the stopping region

V (t, S) = Φ(S),
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S ∂V

∂S
− rV < 0.

Additionally, the continuity of V and ∂V/∂S form the boundary conditions
at Sf (t):

V (t, Sf (t)) = Φ(t, Sf (t)),
∂V (t, Sf (t))

∂S
= Φ′(Sf (t)).
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Chapter 1. Introduction

It is known as the smooth fit principle.

This free boundary problem can be reformulated into a linear comple-
mentarity problem [44] which reads as follows:

V (t, S) ≥ Φ(T, S(T )),

−
(∂V
∂t

+
1

2
σ2S2 ∂

2V

∂S2
+ (r − δ)S ∂V

∂S
− rV

)
≥ 0,

(∂V
∂t

+
1

2
σ2S2 ∂

2V

∂S2
+ (r − δ)S ∂V

∂S
− rV

)(
V (t, S) −Φ(T, S(T ))

)
= 0

with final and boundary conditions. The optimal exercise boundary, Sf (t),
is automatically captured by this formulation and can be determined a-
posteriori. It is the set of points for which we have equality sign for the
inequalities in this problem.

A second type of early exercise option, is the so-called Bermudan option.
Having this option, a holder is allowed to exercise the option prior to the
exercise date T , at certain prescribed dates, the exercise moments. Hence if
at these moments the condition

V (t, S(t)) > Φ(T, S(t))

holds, the option should not be exercised. Otherwise, if the price of the
option equals the contract function, a holder obviously exercises his option.
At exercise moments, the option value is equal to:

V (tE , S(tE)) = max{Φ(tE , S(tE)), V (tE , S(tE))}. (1.37)

In Figure 1.9 the solutions of a European put and an Bermudan put are
compared.

1.7 Dividends

In equation (1.10), the parameter δ represents a continuous dividend yield.
However, on most stocks, dividend is paid at discrete moments, for example
once or twice a year. This is called a discrete dividend, D.

As an illustration of a dividend payment, we consider two portfolios.
The first portfolio contains a European call option on the dividend paying
stock and an amount of cash equal to D + Ke−rT . The second portfolio
contains one asset. By similar arguments as in the previous section, the
value of the first portfolio is equal to S(T ) +D if S(t) > K. Otherwise the
value is equal to K+D, because the option is not exercised and the amount
D is not invested at the risk-free rate. The value of the second portfolio is
S(T ) +D, because during the lifetime of the option, the amount D is paid.
We see that at maturity time, the value of the first portfolio is larger than
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Figure 1.9: Contract function, European and Bermudan put price with K =
100, r = 0.1, δ = 0.02, σ = 0.3, T = 2

the value of the second portfolio. Under the absence of arbitrage, this holds
for the period before the dividend payment too, so we have:

V (t, S(t)) +D +Ke−r(T−t)
> S(t)⇔ V (t, S(t)) > S(t)−D −Ke−r(T−t).

Considering early exercise when V (t, S(t)) > Φ(t, S(t)) = max{S(t)−K, 0},
we see that early exercise is optimal if

D > K(1− e−rT ). (1.38)

We see that for some values of D (and also for the continuous dividend
yield), exercising a call option could be optimal. In an analogous way, we
can derive that it is optimal to exercise early in the case of an American put
option if[31, 2]:

D 6 K(1− e−rT ). (1.39)

Furthermore Meyer [34] derived that a free boundary as defined in Section
1.6 can disappear during a period:

δt =
1

r
ln(1 +

D

K
). (1.40)

We see that the dividend payment has an influence on both the asset
price as well as on the portfolio. However, the price of an option does not
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change over the ex-dividend date, td. We adopt the technique of modelling
discrete dividend by a jump condition at the ex-dividend date td [52]:

V (t−d , St−d
) = V (t+d , St+d

). (1.41)

where t−d , t
+
d represent the times just before and after the ex-dividend date,

respectively. In fact, we solve the Black-Scholes partial differential equation
in two parts. First, the part from T to t+d and then from t−d to t = 0.
This will be explained in more detail in the section describing the numerical
procedures.
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Chapter 2

Single-asset option pricing

with the PDE method

2.1 Introduction

This chapter covers the numerical solution of the single-asset option pricing
problem by solving the one-dimensional partial differential equation (1.10).
Efficient solution of the one-dimensional option pricing problem can be seen
as a basic requirement for solving the multi-dimensional problem. Since the
domain of the partial differential equation is the whole positive real axis,
some problems may occur when using numerical techniques. In Section 2.2,
the boundary conditions for the one-dimensional option pricing problem are
discussed as well as the truncation of the domain of computation. Section
2.3 contains the discussion of the numerical solution technique. The derived
difference equations are generalised to the multi-dimensional case in Chapter
3. In Section 2.4 grid stretching is discussed. Grid stretching is a method
to improve the accuracy of the numerical solution in the region of interest.
Furthermore, the numerical solution of the hedge parameters in combination
with the grid stretching is presented. Section 2.5 shows some numerical
experiments. We present a plain vanilla call option comparing the different
discretisation techniques. A digital option is also considered, because it is
a well-known example of contract with a discontinuity. Some options on
dividend paying stocks are discussed as well as early exercise examples. We
draw our conclusions in Section 2.6.

2.2 Boundary conditions

We recall equation (1.10) for the single-asset problem:




∂V

∂t
+ (r − δ)S ∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
− rV = 0

V (T, S) = Φ(T, S(T ))
(2.1)
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Chapter 2. Single-asset option pricing with the PDE method

This equation is a parabolic partial differential equation of the anti-
diffusion type. In the introduction, we have already discussed the final
conditions, that determine the type of the option. Since parabolic differential
equations are typically stiff [27], the numerical solutions can be naturally
obtained by implicit time integration. In that case boundary conditions are
mandatory to have a well-posed problem.

The solution is computed on the domain [0,∞) × [0, T ]. For numerical
treatment, the domain has to be truncated to some maximum value Smax.
In the work by Kangro and Nicolaides [30], the error is estimated when S is
truncated at a certain value for Smax. By rigorous analysis, they state that
if Smax is chosen as:

Smax = Ke
√

2σT log 100 (2.2)

the error is of prescribed size (i.e. typically less than 0.01). For a (European)
put option, we have P (t, Smax) ≈ 0. Using the put-call parity (1.17) from
Section 1.4.1, the boundary condition for a call option, if S = Smax, reads:

V (t, Smax) = Smaxe
−δ(T−t) −Ke−r(T−t), (2.3)

This type of boundary condition is called an inhomogeneous Dirichlet con-
dition. We see that the value of the option shows a linear behaviour if S
increases towards Smax. Another type of boundary condition is the linearity
condition. Such a condition on a general boundary ∂Ω reads:

∂2V

∂S2
= 0 S ∈ ∂Ω. (2.4)

This type of boundary conditions for the second order partial differential
equation does not guarantee a well-posed problem. It may cause inaccuracies
by numerical solution. However, Tavella [48] and Forsyth [53] show that
option problems with a contract function that is linear at the boundaries,
can be treated with sufficient accuracy. This kind of boundary condition is
used in the multi-dimensional case as well when an exact boundary solution
or Dirichlet boundary conditions are not known. The linearity condition
holds for both put and call options.

If S = 0 in equation (2.1), then the Black-Scholes equation reduces to
an ordinary differential equation:





dV

dt
− rV = 0

V (0) = Φ(0, 0).
(2.5)

Equation (2.5) can serve as the boundary condition for S = 0 in equation
(2.1). This boundary condition comes directly from the problem itself and
therefore is is known as a natural boundary conditions. If these boundary
conditions are available (even for multi-asset options), then these boundary
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conditions should be preferred to linearity conditions, because the imple-
mentation is straightforward. From the contract function of a call option,
we have Φ(T, 0) = 0 and so the solution of equation (2.5) reads V (t) = 0 for
a call option. For a put option Φ(T, 0) = K and the solution of equation
(2.5) reads V (t) = Ke−r(T−t). The Black-Scholes partial differential equa-
tion for a European call option defined on a truncated domain with proper
initial and boundary conditions now reads:





∂V

∂τ
= (r − δ)S ∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV

V (0, S) = max(S −K, 0)
V (τ, 0) = 0

V (τ, Smax) = Smaxe
−δτ −Ke−rτ ,

(2.6)

where we already transformed the final condition into an initial condition
by replacing T − t by τ . Henceforth we use t as the time coordinate, but we
assume that all partial differential equations are transformed to well-posed
problems with initial conditions.

2.3 Numerical solution

2.3.1 Discretisation

Equation (2.6) can be generalised to a more standard form:





∂V

∂t
= f(S)

∂2V

∂S2
+ g(S)

∂V

∂S
− rV,

V (0, S) = Φ(T, S(T )),

V (t, Smin) = L(t) or
∂2V

∂S2
|S=Smin = 0,

V (t, Smax) = R(t) or
∂2V

∂S2
|S=Smax = 0.

(2.7)

The functions L(t), R(t) and Φ(t, S) determine the type of contract and the
value Smin is typically zero. The discretisation of the partial differential
equation is independent of the chosen boundary conditions. The solution,
V (t, S), is discretised first at an equidistant (t, S)−mesh. The value of the
solution at a certain point, (tν , Si), will be abbreviated by V ν

i . The distance
between two grid points, i.e. the values Si and Si+1 equals h and the time
step, ∆t, is the difference between tν and tν+1. The number of grid points
is equal to N and the number of time steps is M , so:

h =
Smax − Smin

N
, (2.8)

∆t =
T

M
. (2.9)
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Chapter 2. Single-asset option pricing with the PDE method

The partial differential equation is discretised according to the finite differ-
ence method with for example the so-called θ−scheme:[48]

V ν+1
i − V ν

i

∆t
= (1− θ)

(
fi
V ν

i+1 − 2V ν
i + V ν

i−1

h2
+ gi

V ν
i+1 − V ν

i−1

2h
− rV ν

i

)
+

+ θ

(
fi
V ν+1

i+1 − 2V ν+1
i + V ν+1

i−1

h2
+ gi

V ν+1
i+1 − V ν+1

i−1

2h
− rV ν+1

i

)
.

(2.10)

If θ = 1,the scheme is the so-called BDF1 (backward differentiation formula)
or backward Euler scheme. The error of this discretisation follows from the
Taylor expansion and reads O(h2+∆t). The value θ = 0 leads to the explicit
Euler scheme which is not used in this thesis. The value of θ that may lead
to a higher accuracy is θ = 1

2 , the Crank-Nicolson method with accuracy
O(h2 + ∆t2), so second order in asset price and time.

If the linearity boundary conditions are used, then a one-sided difference
scheme is used for the S−coordinate at the boundary. For example if S =
SN = Smax, the scheme reads:

V ν+1
N − V ν

N

∆t
= (1− θ)

(
gi

3V ν
N − 4V ν

N−1 + V ν
N−2

2h
− rV ν

N

)
+

+ θ

(
gi

3V ν+1
N − 4V ν+1

N−1 + V ν+1
N−2

2h
− rV ν+1

N

)
,

(2.11)

and this scheme also has an accuracy of O(h2 + ∆t2), if θ = 1
2 .

The initial conditions (i.e. contract functions of the options) are non-
differentiable in general. Hence, some difficulties with the Crank Nicolson
method may occur [37], since this time discretisation is not L-stable [26].
Therefore, the so-called Rannacher time-marching can be applied [39, 22]
which means that the first step is preformed with θ = 1, followed by M − 1
steps of the Crank-Nicolson scheme (θ = 1

2). Instead of the M − 1 Crank-
Nicolson steps, the time-integration can also be done with the BDF2 scheme:

3
2V

ν+1
i − 2V ν

i + 1
2V

ν−1
i

∆t
= fi

V ν+1
i+1 − 2V ν+1

i + V ν+1
i−1

h2
+

+ gi

V ν+1
i+1 − V ν+1

i−1

2h
− rV ν+1

i

(2.12)

The accuracy is again O(h2 + ∆t2). This method requires two previous
solution (V ν

i and V ν−1
i ), and therefore if ν = 1, the BDF 1 scheme (equation

(2.10) with θ = 1) is used.
Higher order accuracy can be obtained by using higher order difference

methods. These methods use more grid points to discretise a derivative. A
higher order time-integration method employs more previous solutions to
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2.3. Numerical solution

obtain a higher order time accuracy. The combined schemes for an accuracy
of O(h4 +∆t4) based on a BDF4 scheme and long-stencil central differences
in asset space reads:

1

∆t

(
25

12
V ν+1

i − 4V ν
i + 3V ν−1

i − 4

3
V ν−2

i +
1

4
V ν−3

i

)
=

fi
−V ν+1

i+2 + 16V ν+1
i+1 − 30V ν+1

i + 16V ν+1
i−1 − V ν+1

i−2

12h2
+

gi
−V ν+1

i+2 + 8V ν+1
i+1 − 8V ν+1

i−1 + V ν+1
i−2

12h
− rV ν+1

i .

(2.13)

For the computation at point Si, five adjacent spatial points are required
and for the time point ν + 1, four preceding steps are needed. The first
two steps can be done by the use of BDF1 and BDF2 steps. A third order
time-integration, BDF3, is the used between steps ν = 2 and ν = 4.

Finally, for the discretisation in the points S1 and SN−1, a one-sided
difference scheme is used, but now for both the first and second derivatives.
For example, the O(h4 + ∆t4) scheme in the point SN−1 reads:

1

∆t

(
25

12
V ν+1

i − 4V ν
i + 3V ν−1

i − 4

3
V ν−2

i +
1

4
V ν−3

i

)
=

fN−1

10V ν+1
N − 15V ν+1

N−1 − 4V ν+1
N−2 + 14V ν+1

N−3 − 6V ν+1
N−4 + V ν+1

N−5

12h2
+

gN−1

3V ν+1
N + 10V ν+1

N−1 − 18V ν+1
N−2 + 6V ν+1

N−3 − V ν+1
N−4

12h
− rV ν+1

i .

(2.14)

2.3.2 Linear system, early exercise and dividends

The schemes (2.10), (2.12) or (2.13) form a set of linear equations. These
equations can be denoted by an algebraic matrix equation of the type Pv =
b, where P is the discretisation matrix, v the vector of unknowns (i.e.
containing V ν+1

i ) and vector b containing the right hand sides. In this
latter vector, the boundary conditions appear as well which is called non-
eliminated boundary conditions. A reason to keep the boundary conditions
in the matrix lies in the generalisation of the discretisation to the multi-
dimensional case. When eliminated boundary conditions are used, the use of
Kronecker products is not straight-forward to discretise mixed derivatives.
The boundary conditions are placed on the first and last positions of the
vector b and therefore the first and last row of matrix P contain a 1 as
diagonal entry.

The construction of the matrix P can be done by constructing difference
matrices for every derivative separately and then adding these together. For
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Chapter 2. Single-asset option pricing with the PDE method

example, difference matrix A1 for the second derivative with:

(A1)ij =





−2
h2 j = i
1
h2 j = i± 1

0 otherwise

(2.15)

and a difference matrix B1 for the first derivative with

(B1)ij =





1
2h j = i+ 1
−1
2h j = i− 1.

0 otherwise

(2.16)

or we may use the long stencils as used in equations (2.13). The first and
last row of these matrices may change when the boundary stencils (2.11) or
(2.14) are used. If these matrices are multiplied by the coefficient functions,
we obtain:

FA1 + GB1 − rI
with F and G diagonal matrices containing f0, f1, . . . , fN and g0, g2, . . . , gN ,
respectively and I is the identity matrix. Now, the construction of the θ
scheme in matrix formulation reads:

Ivν+1 − Ivν = (1− θ)∆t [FA1 + GB1 − rI]vν+

+ θ∆t [FA1 + GB1 − rI]vν+1,
(2.17)

and we have to solve Pvν+1 = b with:

P = I− θ∆t [FA1 + GB1 − rI]
b = I + (1− θ)∆t [FA1 + GB1 − rI]vν .

The construction of these matrices derivative-wise is useful for the generali-
sation of the discretisation to the multi-dimensional case, because they can
be combined per coordinate to construct the multi-dimensional version of
P. This construction is described in detail in Section 3.2.2.

The solution of the algebraic equation Pvν+1 = b, with typically large
vectors and matrices can be performed by a direct solution method like an
LU-decomposition or Gauss elimination. For higher-dimensional cases, we
use iterative solvers, like Bi-CGSTAB in combination with multigrid.

The numerical computation of American options or options with divi-
dend is also of interest. In Section 1.6, we presented the linear complemen-
tary problem for the early exercise options. The discretised version of this
problem, with the use of the discretisation matrix P reads:

(
Pvν+1 − b

)
·
(
vν+1 −Φ

)
= 0

such that Pvν+1 − b > 0 and vν+1
> Φ,

(2.18)
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2.3. Numerical solution

where Φ = [Φ(tν , S0(tν)),Φ(tν , S0(tν)), . . . ,Φ(tν , SN (tν))]
T . This system of

equations holds for every time step, ν and it can be used with both second
and fourth order asset and time discretisations.

System (2.18) is then solved by the projected successive over-relaxation
method (PSOR) [44, 14]. This method is an element-wise iterative solution
method. Consider the computation of the vector vν and a desired tolerance
Tol. Let xk be the k−th iterated solution of vν , then by processing each
element, we define:

zk
i = bi −

i−1∑

j=0

pijx
k
j −

N∑

j=i

pijx
k−1
j (2.19)

with pij the entries of matrix P and xk
j the j−th position of vector xk. Then

with equation (2.19), the new iterated solution for position j reads:

xk
i = max{Φ(tν , Si(tν)), xk−1

i +
zk
i

pii
}. (2.20)

We observe that in equation (2.19) the iterated solution at step k+1 already
occurs. The reason is the element-wise processing. For element j, the known
values of Xk are used. The iteration stops when the solution of the original
problem is lower than the desired tolerance:

‖Pvν+1 − b‖∞ 6 Tol. (2.21)

The computation of System (2.18) is now summarised in Algorithm 1.

Algorithm 1: PSOR

Initialise and compute P1

for ν = 1 to ν = M do2

Compute Φν and bν
3

Set x0
i = vν

i4

while ‖Pvν+1 − bν‖ > Tol do5

for j = 1 to j = N do6

Compute zk
i via (2.19).7

Compute xk
i via (2.20).8

endfor9

endw10

endfor11
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Chapter 2. Single-asset option pricing with the PDE method

2.4 Grid stretching

The accuracy of a finite difference approximation depends on the existence
of several derivatives in the Taylor’s expansion of a solution, but in option
pricing the final condition is not differentiable (or even discontinuous in the
case of a digital option). Therefore, local grid refinement seems a logical
choice to obtain a satisfactory accuracy. It is well-known that local grid re-
finement near sharp corners in the domain or near singularities in an equa-
tion often improves the overall discretisation accuracy drastically. By an
h-refinement in the vicinity of a singularity the discretisation error is locally
decreased, due to the smaller h, and the global accuracy is not spoiled by the
well-known pollution effect [49], as it is encountered for elliptic or parabolic
equations. The principle of local refinement is simple: Place more points
in the neighbourhood of the grid points where the non-differentiable condi-
tion occurs. This can be done by adaptive grid refinement for some regions,
based on an error indicator, or by an analytic coordinate transformation,
which results in an a-priori stretching of the grid. To avoid confusion, we
will call the one-to-one one-dimensional coordinate transformation derived
here coordinate stretching (in contrast to true coordinate transformation as
is used in Sections 3.5) A coordinate stretching is an elegant way in our
applications as the region of interest is known beforehand. An equidistant
grid discretisation can be used after the analytic stretching, as only the co-
efficients in front of the derivatives change. We explain the principle for the
general parabolic partial differential equation (2.7):





∂V

∂t
= f(S)

∂2V

∂S2
+ g(S)

∂V

∂S
− rV

V (0, S) = Φ(T, S(T ))

V (t, Smin) = L(t) or
∂2V

∂S2
|S=Smin = 0

V (t, Smax) = R(t) or
∂2V

∂S2
|S=Smax = 0.

Consider a coordinate stretching y = ψ(S), which must be one-to-one, with
inverse S = ϕ(y) = ψ−1(y) and let V̂ (t, y) := V (t, S) (unknowns with
“hat” exist on the stretched grid). By the chain rule, the first and second
derivatives with respect to S of V (t, S) become:

∂V

∂S
=

∂V̂

∂y

dy

dS
=
∂V̂

∂y

(
dS

dy

)−1

=
1

ϕ′(y)
∂V̂

∂y
, (2.22)

∂2V

∂S2
=

∂

∂y

dy

dS

(
1

ϕ′(y)
∂V̂

∂y

)
=

1

ϕ′(y)
∂

∂y

(
1

ϕ′(y)
∂V̂

∂y

)

=
1

ϕ′(y)2
∂2V̂

∂y2
− ϕ′′(y)
ϕ′(y)3

∂V̂

∂y
(2.23)
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2.4. Grid stretching

Application of (2.22) and (2.23) to (2.7) changes the factors f and g into:

f̂(y) =
f(ϕ(y))

(ϕ′(y))2
, ĝ(y) =

g(ϕ(y))

ϕ′(y)
− f(ϕ(y))

ϕ′′(y)
(ϕ′(y))3

(2.24)

The boundary points Smin and Smax are also transformed into ψ(Smin) and
ψ(Smax), respectively. The equidistant grid size for the transformed equa-
tion is h = (ψ(Smax)− ψ(Smin))/N , assuming function ψ to be a monoton-
ically increasing function.

The spatial stretching used for the one-dimensional Black-Scholes equa-
tion here originates from [13] and is also presented in [48]:

y = ψ(S) =
sinh−1 (ξ (S − SR))− c1

c2 − c1
, (2.25)

with normalisation constants c1 = sinh−1(ξ(Smin − SR)) and
c2 = sinh−1(ξ(Smax − SR)), so that y ∈ [0, 1]. The grid is refined around
S = SR, which is typically set equal to the strike price K. Parameter ξ
determines the amount of stretching. In the analytic function (2.25) the
combination ξSR appears. For satisfactory accuracy, especially on coarse
grids, it appears advantageous to keep this quantity constant. Setting ξSR =
15, for example, has proven to be an appropriate choice over a variety of
option pricing parameters (by numerical experiments). Figure 2.1 shows

0 5 10 15 20 25 30
0

5

10

15

S

V

Figure 2.1: Solution of the European call pricing problem on a stretched
grid with ξ = 1.

the solution of a European call on a stretched grid with stretching around
SR = 15 for ξ = 1 (ξSR = 15). The difference in the number of points per
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Chapter 2. Single-asset option pricing with the PDE method

S-interval with ξ = 1 and ξ = 12, for example. is depicted in Figure 2.2.
The number of points per interval is displayed for three grid sizes of 20-, 40-
and 80 points with different colours (from light to dark in Fig. 2.2). Thus,
larger ξ means fewer points in the outer regions. When ξ decreases the grid
approaches an equidistant one.
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Figure 2.2: Number of grid points in an interval on S-axis for ξ = 1 (left)
and ξ = 12 (right). The number of points is 20, 40 and 80 for the colours
from light to dark.

For stretching (2.25), the inverse and the first two derivatives are:

ϕ(y) =
1

ξ
sinh (c2y + c1(1− y)) + SR, (2.26)

J(y) =
c2 − c1
ξ

cosh (c2y + c1(1− y)) , (2.27)

H(y) =
(c2 − c1)2

ξ
sinh (c2y + c1(1− y)) . (2.28)

Here J(y), the Jacobian, is the first derivative of ϕ(y) and H(y), the Hes-
sian, denotes its second derivative. Applying stretching (2.26) to the final
condition gives:

V̂ (T, y) = max

(
1

ξ
sinh (c2y + c1(1− y)) + SR −K, 0

)
. (2.29)

The kink in the final condition of a European option does not disappear;
the condition is still not differentiable.

For the valuation of the hedge parameters in Section 1.5, we use nu-
merical differentiation. If the numerical solution is known, then a difference
equation (see for example equation (2.10)) can be used to compute the ∆
on the S−grid. However, if the coordinate stretching (2.25) is used, then
the equation for ∆ changes into:

∆ =
∂V

∂S
=

1

J(y)

∂V̂

∂y
, (2.30)
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where
∂V̂

∂y
is obtained by a difference equation with respect to y and J(y)

can be found in equation (2.27).
The other hedge parameter of our interest, Γ, is the derivative of the ∆,

or the second derivative of the option price. Using the coordinate stretching,
we have:

Γ =
∂2V

∂S2
= J−2(y)

∂2V̂

∂y2
−H(y)J−3(y)

∂V̂

∂y
. (2.31)

In this equation,
∂2V̂

∂y2
is the numerical differentiation based on the central

difference discretisation on the y−grid. H(y) is the second derivative of the
stretch function (2.28).

2.5 Numerical experiments

We start with some numerical experiments and solve a European call op-
tion and a digital call option. Both options have an analytic solution and
therefore these analytic solutions are used to investigate the behaviour of
the numerical methods. We will perform numerical experiments with the
stretching parameter, ξ, in one dimension in the next two sections and we
will use the results for the options with dividend and early exercise. These
options do not have an analytic solution.

2.5.1 European option with continuous dividend yield

We start with a reference option:

K = 15, S0 = K, σ = 0.3, r = 0.05, δ = 0.03, T = 0.5. (2.32)

The European (vanilla) call is computed to gain some insight in the proper-
ties of the numerical techniques. The numerical solution, its first and second
derivatives at initial time t = 0 are compared to the analytic solution in the
infinity norm. Next to this, the tables below present the error reduction
factors c∞, defined as: c∞ = |Vh − Vex|∞/|V2h − Vex|∞ for some vector V ,
where Vh and Vex denote the solution on mesh size h and the exact solution,
respectively. We aim for accuracy with only a few grid points in order to
the reduce the computational time as much as possible, therefore the grids
are typically not finer than 40× 40.

Table 2.1 presents results obtained on both a non-stretched as a stretched
grid in space based on a fourth order scheme proposed in (2.13). The outer
boundary Smax has been placed at three times the exercise price, in accor-
dance with equation (2.2).

It is shown in Table 2.1 that the accuracy of the results in V,∆ and Γ
is nicely improved with the grid stretching (ξ = 1). We do not observe a
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Table 2.1: Comparison of error and accuracy in V, ∆ and Γ (t = 0) for a
European call option on non-stretched (Top) and stretched grids with ξ = 1
(Bottom).

Grid ‖V − V ex‖∞ c∞ ‖∆ −∆ex‖∞ c∞ ‖Γ− Γex‖∞ c∞
10× 10 1.6× 10−1 9.5 × 10−2 2.2 × 10−2

20× 20 3.7× 10−2 4.3 1.7 × 10−2 5.6 3.7 × 10−3 6.1
40× 40 7.1× 10−3 5.2 2.0 × 10−3 8.5 6.5 × 10−4 5.7

10× 10 1.1× 10−2 1.9 × 10−2 6.3 × 10−3

20× 20 1.0× 10−3 10.1 3.1 × 10−3 6.2 1.3 × 10−3 4.8
40× 40 9.3× 10−5 11.2 2.9 × 10−4 10.8 9.7 × 10−5 13.6

fourth order error reduction on these grids with a “moderate stretching”,
but the error for 20 × 20 points is already less than one Euro cent with
the transformation. This is a satisfactory result. Other experiments in [36]
show that with more severe stretching fourth order convergence could be
obtained. However, the error on the coarser grids is significantly larger than
that obtained for ξ = 1 in Table 2.1. Therefore, ξ = 1 is to be preferred.
The stretched grid, the solution and derivatives for ξ = 1 and ξ = 12 are
displayed in Figure 2.3.

2.5.2 Digital option with continuous dividend yield

In this section, we evaluate a digital call option. According to [37], the
exact position of the discontinuity in the final condition with respect to the
position of the grid points is important for satisfactory accuracy. Test results
in [37] show that if K is not exactly between two grid points when applying
a numerical scheme to a digital option, a satisfactory accuracy and regular
grid convergence are not easily obtained.

In addition, for digital options with the discontinuous final condition, we
need a proper time integration. The Greeks are the quantities in which nu-
merical oscillations may occur with an improper numerical time integration.
Examples can be constructed for which the lack of damping properties of
the Crank Nicolson scheme can clearly be seen in Γ, see, for example [37].
Therefore we use the Rannacher time-marching defined in Section 2.3.1 and
we start first with equation (2.10), with θ = 1 we continue with the BDF2
(2.12), BDF3 and BDF4 (2.13).

The parameters chosen here for the digital call are:

K = 15, σ = 0.3, r = 0.05, δ = 0.03, T = 0.5. (2.33)

Table 2.2 shows the convergence results for the digital call (2.33), and its
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(e) Γ, ξ = 1
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Figure 2.3: Plots of numerical option price V , ∆ and Γ of a European call,
K = 15, σ = 0.3, δ = 0.03, r = 0.05, T = 0.5, versus the analytic solution
with the 20 points stretched grids.
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Table 2.2: Comparison of error and accuracy in V, ∆ and Γ (t = 0) for a
digital call. Fourth order scheme (2.13). Top: without stretching. Bottom:
stretched grid with ξ = 1.

Grid ‖V − Vex‖∞ c∞ ‖∆−∆ex‖∞ c∞ ‖Γ− Γex‖∞ c∞
10× 10 3.6 × 10−2 3.1× 10−2 1.4× 10−2

20× 20 1.5 × 10−2 2.4 5.1× 10−3 6.1 5.8× 10−3 2.4
40× 40 1.9 × 10−3 8.0 7.7× 10−4 6.7 5.8× 10−4 9.9

10× 10 5.4 × 10−3 1.6× 10−2 6.3× 10−3

20× 20 1.0 × 10−3 5.4 2.1× 10−3 7.6 2.0× 10−4 31.0
40× 40 7.7 × 10−5 13.0 2.6× 10−4 8.3 9.8× 10−5 2.1

derivatives on the stretched grid with ξ = 1. The accuracy observed on the
coarse grids for the problem with discontinuous final condition resembles the
accuracy for the plain vanilla call from Table 2.1 quite well. mesh. When the
grid points are not placed properly - such that SR = K is exactly between
two grid points - the accuracy is drastically reduced.

Figure 2.4 displays graphically the option value, Delta and Gamma for
the digital call on the stretched grids. It can be observed that with a severe
stretching (ξ = 12) the grid resolution, around interesting positions for the
derivatives may not be sufficient on a relatively coarse grid. This is an ex-
planation of the irregular convergence behaviour that is sometimes observed
on these coarse grids. A moderate stretching is again to be preferred.

2.5.3 European options with discrete dividend

We now present some numerical examples in which the continuous dividend
payment is replaced by a discrete dividend payment. These dividend pay-
ments are paid once or twice a year (see Section 1.7) and it may well happen
that the dividend payment falls in the lifetime of the option. In order to
deal with the jump condition (1.41) accurately, the following procedure is
applied. We first perform a regular Black-Scholes computation from the ma-
turity date until the ex-dividend date. This is done with the stretched grid
and the fourth order discretisation in space. At the ex-dividend date, (1.41)
is taken into account by means of interpolation. Lagrange interpolation of
fourth order has been applied to the numerical solution on the stretched
grid, since typically S −D (D is the dividend payment) may not be exactly
a grid point. After the ex-dividend date the Black-Scholes computation is
restarted with the initialisation by the BDF1, BDF2, BDF3 sequence pre-
ceding the BDF4 time integration. In our computations we place td exactly
on a time line, t−d and t+d are assumed to exist at the same line. The numer-
ical solutions obtained are compared to exact values for discrete dividends
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Figure 2.4: Plots of numerical option price V , ∆ and Γ of a digital call,
K = 15, σ = 0.3, δ = 0.03, r = 0.05, T = 0.5, versus the analytic solution
with the 40 points stretched grids.
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found in [18]. The parameters from [18], that we also choose here, are
K = Sspot = 100, T = 1, r = 0.06, σ = 0.3 and D = 7 (a dividend pay-
ment of e 7). The dividend payment may take place on three different time
points, t = 0.0001, t = 0.5 and t = 0.9999.

Table 2.3 presents the convergence on different grid sizes, with ξ =
0.15, (ξK = 15). As for the plain vanilla call we observe a small error

Table 2.3: Convergence of option value at t = 0 with discrete dividend
payment at different t values, moderate stretching ξ = 0.15.

Grid ‖V − Vex‖∞ c∞ ‖V − Vex‖∞ c∞ ‖V − Vex‖∞ c∞
t = 0.0001 t = 0.5 t = 0.9999

10× 10 1.7 × 10−2 1.5× 10−2 1.3 × 10−1

20× 20 4.5 × 10−3 3.9 4.9× 10−3 3.1 1.7 × 10−3 73.5
40× 40 1.0 × 10−3 4.4 1.1× 10−3 4.6 4.0 × 10−4 4.3
80× 80 7.9 × 10−5 12.7 1.0× 10−4 10.6 2.0 × 10−4 2.0

with moderate stretching (and, not shown, a fourth order convergence with
more severe stretching). Also for the extreme cases t = 0.0001, t = 0.9999
satisfactory results are obtained, i.e. dividend payment just after the start
of the contract or just before the maturity date.

We also present some results for multiple discrete dividends, as in [18].
With parameters S0 = K = 100, r = 0.06, σ = 0.25 and multiple dividends
of four (ex-dividend date is each half year). Table 2.4 presents the numerical
results for T = 1, T = 2 and T = 3, with one, two and three dividend pay-
ments, respectively. It compares the numerical approximation to the exact
solution from [18]. Smax = 3K according to [30] and stretching parameter
ξ = 0.15. For larger values of T the number of points in time increases
proportionally. The numerical results obtained with only a few grid points

Table 2.4: Multiple discrete dividends payments, K = 100,D = 4, ξ = 0.15.

T = 1 T = 2 T = 3

Grid V (t = 0) Grid V (t = 0) Grid V (t = 0)

10 × 10 10.654 10× 20 15.229 10× 30 18.734
20 × 20 10.665 20× 40 15.210 20× 60 16.616
40 × 40 10.661 40× 80 15.202 40× 120 18.604
80 × 80 10.661 80× 160 15.201 80× 240 18.602

160 × 160 10.661 160× 320 15.201 160× 480 18.602
320 × 320 10.661 320× 640 15.201 320× 960 18.602

Price [18] 10.661 15.199 18.598
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Table 2.5: American put reference problem from [34], K = 100,D = 2, ξ =
0.15.

Grid V (t = 0, 80) V (t = 0, 100) W (t = 0, 120)

20× 20 0.223 0.105 0.043
40× 40 0.223 0.105 0.043

Meyer [34]: 0.223 0.105 0.043

are very satisfactorily. Other discrete dividend results from [18] can also be
confirmed accurately with our discretisation techniques.

2.5.4 American options with discrete dividend

We finally consider an American put with parameters from [34]: K =
100, σ = 0.4, r = 0.08,D = 2, td = 0.3, T = 0.5 and µ = 0.15, Smax = 3K.
Results for S = 80, 100, 120 at t = 0 on a 20 × 20- and 40 × 40-grid are
compared to those in [34] in Table 2.5. Algorithm 1 is now used with a
suitable tolerance of 10−5. With only 20 points in space and time and grid
stretching with ξ = 0.15, the results from [34] are reproduced.

We also consider an American put with two ex-dividend dates, td1 =
0.3, td2 = 0.8 (T = 1) and visualise the free boundary as a function of time
for different dividend payment strategies (as in [34]). Figure 2.5 shows the
free boundary for an American put with problem parameters: K = 100, σ =
0.4, r = 0.08, T = 1. In the figure the free boundary functions presented are
without any dividend payment (D = 0, solid line), with a fixed dividend
payment D = 2 at td1, td2 (dashed line) and with a payment proportional
to the asset price D = 0.02S (dotted line) at the ex-dividend dates. It can
be seen that after the discrete dividend payment the free boundary may
disappear, and reappear, confirming that early exercise is not favourable
after an ex-dividend date according to Section 1.7.

2.6 Conclusions

We solved the one-dimensional Black-Scholes equation for a set of reference
options with only a few grid points. Fourth order accurate space and time
discretisation were proposed, using spatial grid stretching by means of an
analytical coordinate transformation. With the proper choices of grid and
stretching parameters, the fourth order accuracy can be achieved. Important
for our applications is, however, a small discretisation error with only a few
grid points. This was achieved by the techniques proposed with a moderate
stretching. Furthermore, we have observed a satisfactory accuracy of the
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Figure 2.5: Free boundary as function of time with two ex-dividend dates
and different forms of dividend payment: D = 0 (solid), D = 2 (dashed) vs.
D = 0.02S (dotted).

hedge parameters. For the reference problem, about 20 space- and time
steps were sufficient to get the solution accurate to one Euro cent.

Discrete dividend payment is handled very satisfactorily by the stretched
grid discretisation and a fourth order Lagrange interpolation at the ex-
dividend date, even with multiple dividend dates. The accuracy is in this
case high. American put options with discrete dividend can be solved with
the PSOR algorithm and the techniques used for the European options. The
PSOR algorithm is a straightforward method for early exercise.

The discretisation in this method can be generalised to the multi-asset
option pricing problem. Grid stretching seems an interesting way to concen-
trate grid points around a desired point. The fourth order scheme is indeed
a technique to reduce the number of grid points and time steps.
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Chapter 3

Multi-asset option pricing

with the PDE method

3.1 Introduction

This chapter covers the numerical solution of the multi-dimensional Black-
Scholes partial differential equation (1.9). Each underlying asset repre-
sents one of the coordinates in the problem and therefore the problem is
d−dimensional. The numerical solution ingredients - e.g. the discretisation
matrix and final conditions - are constructed automatically. This is done
by the use of Kronecker products. Kronecker products are powerful matrix
operations to set-up a matrix for a d−dimensional problem. In fact, only
one-dimensional discretisation matrices as developed in the previous chapter
are the basic ingredients of this technique. We also show that the mathemat-
ical solution of higher-dimensional problems is not necessarily much more
difficult than a lower-dimensional problem.

However, since the discretisation of the problem is done on a tensor-based
Cartesian grid with Ni, i = 1, . . . , d, grid points per coordinate, the total
number of grid points is the product of these numbers. When we climb in the
dimensions the overall number of grid points or unknowns grows drastically.
We introduce the sparse grid technique [10, 25] in Section 3.3 to avoid serious
problems with memory management. This technique combines solutions on
many coarser sub-grids to obtain a quite accurate approximation of the full
grid solution. Since each sub-problem, belonging to a sparse grid solution,
is independent from the others, this method is straightforward to use in
parallel.

Although the sparse grid technique is a powerful tool to overcome the
curse of dimensionality and we find satisfactory test results in Section 3.4,
the sparse grid technique is not usable under general circumstances. This is
certainly a problem for the multi-asset option pricing problem as we will see
in Section 3.4.3. Therefore some coordinate transformations are presented in
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Section 3.5 to align the kink in the contract function to a grid line. In Section
3.6, we present the results of the sparse grid used in combination with the
coordinate transformation and the coordinate stretching (see Section 2.4).
Finally we draw our conclusions in Section 3.7.

3.2 Discretisation of the equation

3.2.1 Preliminaries

We will now focus on the discretisation of the multi-dimensional Black-
Scholes equation (1.9). We rewrite this partial differential equation as a
general partial differential equation:

∂V

∂t
=

d∑

i=1

d∑

j=1

fij(S)
∂2V

∂Si∂Sj
+

d∑

i=1

gi(S)
∂V

∂Si
− rV (t,S). (3.1)

The discretisation of this equation is similar to the discretisation of the single
asset problem in terms of the matrix based equation (2.17). For example,
the θ−scheme for the multi-dimensional partial differential equation reads:

Ivν+1 − Ivν = (1− θ)∆t




d∑

i=1


FiiA

d
i + GiB

d
i + 2

d∑

j=i+1

FijC
d
ij


− rI


vν

+ θ∆t




d∑

i=1


FiiA

d
i + GiB

d
i + 2

d∑

j=i+1

FijC
d
ij


− rI


vν+1.

In this equation, the matrices Fij and Gi represent the coefficients of the
derivatives in equation (3.1). These matrices contain the discrete func-
tions fij and gi as in (3.1). Matrices Ad

i are the difference matrices on
a d−dimensional Cartesian grid of the second derivative with respect to co-
ordinate Si. Similarly, the matrices Bd

i are the difference matrices of the
first derivative with respect to coordinate Si. Finally, the matrices Cd

ij,
which have a double index, represent the difference matrices of the mixed
derivatives with respect to coordinates Si and Sj . The inner sums run from
j = i+1 to d and are multiplied by 2, because the coefficients are symmetric,
i.e. fij(S) = fji(S) and the mixed derivative itself is a symmetric operator.

The focus in this section is on the construction of the matrices A,B and
C by the use of Kronecker products. The Kronecker products can only be
used, when a certain grid ordering is obeyed.

Definition 3.2.1. A grid ordering is a system of enumeration of all grid
points in a d−dimensional grid. If a coordinate i ∈ {1, . . . , d} has Ni grid
points, then a grid point on this grid will be presented by a set of d numbers
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3.2. Discretisation of the equation

(i1, i2, . . . , id). Every grid point can also be presented by one unique number
m:

m = i1 +

d∑

j=2

ij

j−1∏

k=1

(Nk + 1). (3.2)

where ij is the j−th element of the d−dimensional (i1, i2, . . . , id) set.

Remark 3.2.2. Note that the numbers i with subscripts are different from
the number i itself. i is used for the i−th dimension and ij represents the
i−th grid point in the j−th coordinate.

Example 3.2.3. The point S0 = (S1(i1 = 4), S2(i2 = 3), S3(i3 = 5)) on
a three-dimensional grid with N1 = N2 = N3 = 32 corresponds with row
number 5548 in every difference matrix or coefficient matrix. So the ma-
trix element of F11 with row and column number 5548 is the value of the
coefficient f11 in the point S0. Note that the matrix has in total 35937 rows.

3.2.2 Kronecker products

The construction of the matrices A,B and C is now considered in terms of
Kronecker products. The Kronecker product is a matrix operation, which
is applicable for generally sized matrices, but here we only consider square
matrices. (This in contrast to the regular matrix product, whereby the
sizes must coincide.) However, the Kronecker product is not commutative
in general. The Kronecker product is defined as:

Definition 3.2.4. The Kronecker product ⊗ of matrix E with size (N2 +
1)× (N2 + 1) and matrix D with size (N1 + 1)× (N1 + 1) is defined by [46]:

K = E⊗D =




d00E d01E . . . d0N1E

d10E d11E . . . d1N1E
...

...
...

dN10E dN11E . . . dN1N1E


 . (3.3)

The elements in the matrix K are related to the entries in the original
matrices D and E as follows:

(K)i1+i2(N1+1),k1+k2(N1+1) = (D)i2,k2
(E)i1,k1

(3.4)

Lemma 3.2.5. Given matrices P,Q and R and identity matrices Ii and Ij

of sizes Ni and Nj, respectively, then

Ii ⊗ Ij = Ij ⊗ Ii

P⊗ (Q + R) = P⊗Q + P⊗R

Proof. See [23]
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Definition 3.2.6. The repeated Kronecker product
⊗

is defined as:

d⊗

j=1

Ej = E1 ⊗E2 ⊗ . . . ⊗Ed. (3.5)

Furthermore:
⊗n

j=n Ej = En and
⊗n

j=n+1 Ej = 1.

3.2.3 General difference matrix

The construction of the matrices Ai and Bi is similar and for simplicity we
focus on a discretisation of a derivative with a general difference equation.
In this section, the matrix A can therefore be replaced by B. In Section
3.2.4, the matrices Cij are presented in detail. They are treated separately,
because they are dependent on more than one coordinate.

First we start with the definition of the difference matrix.

Definition 3.2.7. A difference matrix Ad
i is a matrix with as the entries the

coefficients of the discretisation of a derivative with respect to coordinate i
and based on a d−dimensional grid.

Example 3.2.8. Equations (2.15) and (2.16) are examples of difference
matrices. In the notation of Definition 3.2.7, the matrix in equation (2.15)
is presented as A1

1 and the matrix in equation (2.16) as B1
1.

Remark 3.2.9. The notation of Definition 3.2.7 is usable for general cases
and we also use cases when d < i. This notation is a representation of
the discretisation of a derivative with respect to coordinate i. The grid has
d coordinates and i is one of the coordinates. The matrix A1

2 has in fact
nothing to do with the dimensionality of the problem. It is an abbreviation of
the discretisation of a derivative with respect to coordinate 2 on a standard
one-dimensional grid. It can be seen as a one-dimensional problem based on
a grid of coordinate 2.

Consider a discretisation of a derivative with respect to the first coordi-
nate. It can be either a first derivative or a second derivative. The central
difference schemes in Section 2.3.1 are used. The difference matrix on a
d−dimensional grid is derived using mathematical induction. Therefore the
two-dimensional difference matrix A2

1 is necessary as a first induction step.

Lemma 3.2.10. Let A1
1 be the matrix corresponding the difference equa-

tion of the discretisation with respect to the first coordinate. The difference
matrix based on a two-dimensional grid respecting the grid ordering from
Definition 3.2.1 reads:

A2
1 = I2 ⊗A1

1 (3.6)

where I2 is the identity matrix of size (N2 + 1)× (N2 + 1).
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Proof. Using the Kronecker product of two matrices defined element-wise
according to equation (3.4) we have:

(
A2

1

)
i1+i2(N1+1),k1+k2(N1+1)

=
(
I2 ⊗A1

1

)
i1+i2(N1+1),k1+k2(N1+1)

= (I2)i2,k2

(
A1

1

)
i1,k1

=

{(
A1

1

)
i1,k1

i2 = k2

0 i2 6= k2

(3.7)

If a general difference matrix is used for the second derivative to the first
coordinate (see for example equation (2.15)), then we can write for the
approximated value in the coordinate (i1, i2) in a one-dimensional represen-
tation: [

∂2V

∂S2
1

]

i1,i2

≈
N1∑

k1=0

(
A1

1

)
i1,k1

V ν
k1+i2(N1+1)

and similar for the first derivative. The index number i2 is fixed. In the two-
dimensional case, we can set-up a difference equation with a contribution of
all grid points:

[
∂2V

∂S2
1

]

i1+i2(N1+1)

≈
(N1+1)(N2+1)−1∑

k1=0

(
A2

1

)
i1+i2(N1+1),k1

V ν
k1
.

However, the finite difference schemes for the derivatives with respect to
one coordinate are based on contributions of values along that coordinate.
Hence:

[
∂2V

∂S2
1

]

i1+i2(N1+1)

≈
N1∑

k1=0

(
A2

1

)
i1+i2(N1+1),k1+i2(N1+1)

V ν
k1+i2(N1+1).

The coefficients are the same as in the one-dimensional representation, so
we have:

(
A2

1

)
i1+i2(N1+1),k1+k2(N1+1)

=

{(
A1

1

)
i1,k1

i2 = k2

0 i2 6= k2

and this is the same as equation (3.7).

Corollary 3.2.11. Let A1
2 be the matrix corresponding the difference equa-

tion of the discretisation with respect to the second coordinate. The differ-
ence matrix based on a two-dimensional grid respecting the grid ordering
from Definition (3.2.1) reads:

A2
2 = A1

2 ⊗ I1 (3.8)

where I1 is the identity matrix of size (N1 + 1)× (N1 + 1).
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Proof. Using again the Kronecker product of two matrices defined element-
wise according to equation (3.4) we have:

(
A2

2

)
i1+i2(N1+1),k1+k2(N1+1)

=
(
A1

2 ⊗ I1

)
i1+i2(N1+1),k1+k2(N1+1)

=
(
A1

2

)
i2,k2

(I1)i1,k1

=

{(
A1

2

)
i2,k2

i1 = k1

0 i1 6= k1

(3.9)

Now, if the general difference matrix is used for the second derivative to the
second coordinate, then we can write in a one-dimensional representation:

[
∂2V

∂S2
2

]

i1,i2

≈
N2∑

k2=0

(
A1

2

)
i2,k2

V ν
i1+k2(N1+1)

and similar for the first derivative. The index number i1 is fixed. Similar to
the proof of Lemma 3.2.10, the difference equation in two dimensions can be
constructed using all grid points. However, the finite difference schemes for
the derivatives with respect to one coordinate are based on contributions of
values along that coordinate. Hence:

[
∂2V

∂S2
2

]

i1+i2(N1+1)

≈
N2∑

k2=0

(
A2

2

)
i1+i2(N1+1),i1+k2(N1+1)

V ν
i1+k2(N1+1).

The coefficients are the same as in the one-dimensional representation, so
we have:

(
A2

2

)
i1+i2(N1+1),k1+k2(N1+1)

=

{(
A1

2

)
i2,k2

i1 = k1

0 i1 6= k1

and this is the same as equation (3.9).

Now the general d−dimensional difference matrix is constructed.

Proposition 3.2.12. The difference matrix of the discretisation of a deriva-
tive with respect to the coordinate i based on a d−dimensional grid reads:

Ad
i =




d⊗

j=i+1

Ij


⊗A1

i ⊗




i−1⊗

j=1

Ij


 (3.10)

Proof. The proof consists of three parts. First the case i = 1. Using Lemma
3.2.10 as the induction step, it follows for d > 2:

Ad+1
1 = Id+1 ⊗Ad

1 = Id+1 ⊗




d⊗

j=2

Ij


⊗A1

1 =




d+1⊗

j=2

Ij


⊗A1

1
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where

Id+1 ⊗
d⊗

j=2

Ij =




d⊗

j=2

Ij


⊗ Id+1 =

d+1⊗

j=2

Ij

follows from Lemma 3.2.5.
The next step is i = d. Corollary 3.2.11 is used as induction step. Hence for
d > 2, we have:

Ad
d = Ad−1

d ⊗ I1 = Ad−2
d ⊗ I2 ⊗ I1 = . . . = A1

d ⊗
d−1⊗

j=1

Ij

Finally, for 2 6 i 6 d, we have:

Ad+1
i = Id+1 ⊗Ad

i .

This is in fact an extension of the i = 1 part of the proof. Now we use
Lemma 3.2.10 and Corollary 3.2.11 as induction steps and we have:

Ad+1
i = Id+1 ⊗Ad

i = Id+1 ⊗






d⊗

j=i+1

Ij


⊗Ad−i−1

i




=




d+1⊗

j=i+1

Ij


⊗Ad−i−1

i

=




d+1⊗

j=i+1

Ij


⊗A1

i ⊗




i−1⊗

j=1

Ij


 .

3.2.4 The mixed derivative

The discretisation of the mixed second derivative leads to a difference matrix
with respect to two different coordinates. The mixed derivative can be
written as:

∂2V

∂Si∂Sj
=

∂

∂Si

(
∂V

∂Sj

)
=

∂

∂Sj

(
∂V

∂Si

)
(3.11)

Since the mixed derivative is symmetric. the discretisation does not depend
on the order. Therefore i < j is assumed without loss of generality.

Consider the two-dimensional case. In this case there is only one possi-
bility: the derivative with respect to S1 and S2. First we use a discretisation
for a first derivative with respect to S1. The discretisation matrix is known
as B1

1, where the method of discretisation can be a second or fourth order
central scheme. We then have a difference equation in each point (i1, i2),
which reads:

[
∂V

∂S1

]ν

i1,i2

=
(
B1

1v
ν
)
i1,i2

=

N1∑

k1=0

(
B1

1

)
i1,k1

V ν
k1,i2
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Now we apply the difference equation of the first derivative with respect to
the second coordinate:

[
∂

∂S2

∂V

∂S1

]ν

i1,i2

=

N2∑

k2=0

(
B1

2

)
i2,k2

N1∑

k1=0

(
B1

1

)
i1,k1

V ν
k1,k2

We write this in grid ordering notation according to Definition (3.2.1):

[
∂

∂S2

∂V

∂S1

]ν

i1+i2(N1+1)

=

N2∑

k2=0

N1∑

k1=0

(
B1

2

)
i2,k2

(
B1

1

)
i1,k1

V ν
k1+k2(N1+1)

The subscript of V ν
k1+k2(N+1) is the representation of column numbers of

the large matrix which represents the two-dimensional matrix for the mixed
derivative. Of course the row number defined in Definition 3.2.1 is indicated
by the point (i1, i2) in which the mixed derivative is discretised. The differ-
ence matrix for the mixed derivative is called Cd

ij, representing the mixed
derivative to coordinate i and j with i < j based on a d−dimensional grid:

(
C2

1,2

)
i1+i2(N1+1),k1+k2(N1+1)

=
(
B2

1

)
i2,k2

(
B1

1

)
i1,k1

(3.12)

By use of the definition of the Kronecker product (Definition 3.2.4) we have
proven Proposition 3.2.13.

Proposition 3.2.13. Let B1
1 be the difference matrix of the first derivative

with respect to S1 and B1
2 the difference matrix of the first derivative with

respect to S2 (see Remark 3.2.9), then the difference matrix of the mixed
derivative to the coordinates S1 and S2, C2

1,2 reads:

C2
1,2 = B1

2 ⊗B1
1 (3.13)

According to Proposition 3.2.12, this property for the mixed derivative
with respect to coordinate S1 and S2 can be extended to higher dimensions.
Hence:

Cd
1,2 =




d⊗

j=3

Ij


⊗C2

1,2 =




d⊗

j=3

Ij


⊗B1

2 ⊗B1
1 = Bd−1

2 ⊗B1
1.

This property holds for all mixed derivatives with respect to coordinates Si

and Si+1 by using Proposition 3.2.12:

Cd
i,i+1 =




d⊗

j=i+2

Ij


⊗B1

i+1 ⊗B1
i ⊗




i−1⊗

j=1

Ij


 = Bd−i

i+1 ⊗Bi
i.

For other mixed derivatives, for example with respect to coordinate S1 and
S3, we can write:

C3
1,3 =

[
∂2

∂S1∂S3

]3

=

[
∂

∂S3

∂

∂S1

]3

= B1
3 ⊗B2

1 (3.14)
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3.2. Discretisation of the equation

since C2
1,3 does not exist in our grid ordering. We thus have to use a two-

dimensional representation of the difference matrix of one of the two co-
ordinates and a standard one-dimensional difference matrix for the other
coordinate. Note that equation (3.14) can be written using Proposition
3.2.12 as:

C3
1,3 = B1

3 ⊗B2
1 = B1

3 ⊗ I2 ⊗B1
1. (3.15)

We now have to construct the discretisation for a general mixed derivative,
and equation (3.15) can be used as induction step.

Proposition 3.2.14. Let B1
i and B1

j be difference matrices of the discreti-
sation of the first derivative to the coordinate Si and Sj respectively with
i < j. Then the difference matrix of the mixed derivative to the coordinates
Si and Sj on a d−dimensional grid reads:

Cd
i,j =




d⊗

k=j+1

Ik


⊗B1

j ⊗
(

j−1⊗

k=i+1

Ik

)
⊗B1

i ⊗
(

i−1⊗

k=i

Ik

)
(3.16)

Proof. First the case with j = d:

Cd
i,d = B1

d ⊗Bd−1
i = B1

d ⊗
(

d−1⊗

k=i+1

Ik

)
⊗B1

i ⊗
(

i−1⊗

k=1

Ik

)

and this is equation (3.16) where the first repeated Kronecker product is 1
according to Definition 3.2.6. Furthermore for i = 1 we have:

Cd
1,j = Bd−1

j ⊗B1
1 =




d⊗

k=j+1

Ik


⊗B1

j ⊗
(

j−1⊗

k=2

Ik

)
⊗B1

1

where the last repeated Kronecker product of equation (3.16) is equal to 1
according to Definition 3.2.6. Finally with j = i+ 1:

Cd
i,i+1 = Bd−i

i+1 ⊗Bi
i =

(
d⊗

k=i+1

Ik

)
⊗B1

i+1 ⊗B1
i ⊗

(
i−1⊗

k=1

Ik

)

and we see that the middle repeated Kronecker product vanishes. For the
other cases we use induction and Proposition 3.2.13 and equation (3.15) are
the induction steps. Now:

Cd+1
i,j = Id+1 ⊗Cd

i,j

= Id+1 ⊗




d⊗

k=j+1

Ik


⊗B1

j ⊗
(

j−1⊗

k=i+1

Ik

)
⊗B1

i ⊗
(

i−1⊗

k=i

Ik

)

=




d+1⊗

k=j+1

Ik


⊗B1

j ⊗
(

j−1⊗

k=i+1

Ik

)
⊗B1

i ⊗
(

i−1⊗

k=i

Ik

)
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Chapter 3. Multi-asset option pricing with the PDE method

3.3 Sparse grids

Theoretically, it is possible to solve the discrete system for a general number
of dimensions. However, in computational science, a major problem occurs
when d increases. The size of the discrete solution and the necessary ma-
trices increases drastically. A five-dimensional problem with 32 points per
coordinate in the discrete system employs vectors having 32 million compo-
nents and the corresponding matrix is square and has the order 32 million.
Increasing d further implies severe memory requirements on desktop comput-
ers, which is usually not an option. This is called the curse of dimensionality
[3]. In this section, the sparse grid technique will be presented. This tech-
nique is developed by Zenger and co-workers [10, 55]. The basic idea of the
technique is that a mimic of the original tensor-based grid is computed by
the interpolative use of the solutions on particular coarse grids of the same
dimensionality. The number of sub-problems to solve will increase, while the
computational time per problem decreases drastically. The computational
structure - based on the multi-index - can be used in parallel very easily as
each sub-grid generated from the multi-index is independent of the others.
However, this combination technique will cause inaccuracy, however since
this error can be modelled, it is possible to compute the required number
of sub-problems and interpolate them to get a reasonable mimic of the full
grid solution. With the sparse grid method, the curse of dimensionality can
be broken, so that reaching a dimensionality up to seven dimensions with
standard computational systems is possible.

First of all, the two-dimensional sparse grid technique will be explained in
detail; the error analysis of the complete method is based on the case d = 2.
Thereafter, the error analysis will be extended to d = 3 and generalised
to d > 3. Other combination techniques than the standard ones will be
presented as well.

3.3.1 Basic combination technique in two dimensions

Consider a general two-dimensional discretised problem based on an equidis-
tant grid with N points in both directions and suppose N is a power of 2.
Later, we will generalise the analysis to basic rectangular grids with dif-
ferent numbers of points in each direction. We recall the full grid solution
of this problem as the problem solved on the N × N grid. Now consider
the computation of two solutions. One is on a 1

2N × N sub-grid and the
other is on a N × 1

2N sub-grid. If these two solutions are added together,
then the solution in some points is taken twice. Therefore the solution com-
puted on a 1

2N × 1
2N sub-grid can be subtracted to correct for these double

points. Now, this step is repeated on both the 1
2N × N sub-grid as on

the N × 1
2N sub-grid. Then we have one solution on a N

4 × N sub-grid,
one on a N × N

4 sub-grid and two solutions on a N
2 × N

2 sub-grid. Again,
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3.3. Sparse grids

when adding these solutions, some solutions on some points occur more than
once and this must be corrected. The sum of the solutions on the sub-grids
N
4 × N

2 and N
2 × N

4 has to be subtracted. This procedure can be continued
until we reach the lowest possible number of grid points. Suppose we need
at least two points per coordinate (i.e. two cells and three grid points).
Then the set of sub-grids, GA, on which the solution is computed, is GA =
[(N×2), (N

2 ×4), (N
4 ×8), . . . , (4× N

2 ), (2×N)]. Then the sum of all solutions
has too many contributions of some points. If the solution is computed as
well on all sub-grids from the set GB = [(N

2 ×2), (N
4 ×4), . . . , (4×N

4 ), (2×N
2 )],

and subtracted then, the combination is done in a proper way. This proce-
dure is presented in Figure 3.1 for N = 16. The four top sub-grids represent
the solution on the sub-grids [(16× 2), (8× 4), (4× 8), (2× 16)] and the next
three sub-grids represent the solution on the sub-grids [(8×2), (4×4), (2×8)].

The sub-grids in both sets are ordered according to their number of
points. In the first set, all sub-grids have 32 grid points and in the second
set, the sub-grids have 16 grid points. To develop the combination technique
of the sparse grids, it is a convenient choice to use the logarithm of these
numbers of points. We define a new number, nf , which corresponds to the
number of points in each direction of the full grid: N = 2nf . Furthermore,
we define ni, with i = 1, 2 as the numbers corresponding to the number of
grid points of the sub-grids in GA and GB , such that Ni = 2ni . Hence, if new
sets IA and IB are constructed based on the numbers n1 and n2, then each
element in the sets IA and IB contains two numbers n1 and n2 according to
the sub-grids defined in GA and GB. In the sets GA and GB the product of
the number of grid points is the same. By the definition of ni, we see that
2n1 × 2n2 is equal for all sub-grids in GA or GB. In the new sets IA and IB,
we see that n1 + n2 is equal for all elements. The counterparts of GA and
GB reads:

IA = [(nf , 1), (nf − 1, 2), (nf − 2, 3), . . . , (2, nf − 1), (1, nf )]

IB = [(nf − 1, 1), (nf − 2, 2), . . . , (2, nf − 2), (1, nf − 1)].

The sets IA IB are called multi-indices here. The layer number l is the
sum of the numbers, ni, in each element of the multi-index. Then we see
that our set of sub-grids IA has a layer number of l = nf + 1 and IB has a
layer number of l = nf .

We now arrive at the combination formula developed by Griebel et al.
[25] as the sum over the two-dimensional sub-grids from the multi-index I
for which the layer number is nf + 1 and nf :

V c
nf

=
∑

{(n1,n2)∈I:l=nf+1}
Vn1,n2 −

∑

{(n1,n2)∈I:l=nf}
Vn1,n2 , (3.17)

with Vn1,n2 the solution on a sub-grid from the multi-index. The solution
V c

nf
is computed on a sparse grid defined by (3.17). This combined sparse
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Chapter 3. Multi-asset option pricing with the PDE method

grid is presented for a two-dimensional grid with N = 16 (nf = 4) in Figure
3.1h as well as the construction from the sub-grids from the multi-indices.
In this example we have for the top sub-grids (a-d) l = 5 and for the lower
sub-grids (e-g) l = 4.
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(h) Combined

Figure 3.1: Construction of a 2D sparse grid; (a)–(d): sub-grids on layer
with l = 5, (e)–(g): sub-grids on layer with l = 4; (h) combined sparse grid
solution

3.3.2 Error expansion of the two-dimensional sparse grid

The combination expression for a two-dimensional sparse grid solution in
equation (3.17) is a mimic or approximation of a solution on a full grid
with size 2nf in each direction. The accuracy of the solution by using this
combination equation is the subject of this section. Suppose that an analytic
solution U of the numerical problem is sufficiently smooth and that for every
point in the grid an error expansion of the type

U − Vn1,n2 = C1(hn1)h
2
n1

+ C2(hn2)h
2
n2

+D(hn1 , hn2)h
2
n1
h2

n2
. (3.18)

exists, where C1(hn1), C2(hn2) and D(hn1 , hn2) are appropriate coefficient
functions bounded by a certain constant κ, i.e. |C1(hn1)| 6 κ, |C2(hn2)| 6
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3.3. Sparse grids

κ and |D(hn1 , hn2)| 6 κ,∀hn1 , hn2 . Vn1,n2 corresponds to the numerical
solution on a sub-grid with hn1 as mesh size for the first coordinate and hn2

as mesh size for the second coordinate. The numbers n1 and n2 come from
the multi-index. This expansion holds for e.g. Poisson’s problem on a unit
cube with sufficiently smooth Dirichlet or Neumann boundary conditions
and a sufficiently smooth source function. For the Laplace equation a proof
of this expansion is provided in [28, 11].

Consider the combined solution on the sparse grid as given by equation
(3.17), then the error reads:

U − V c
nf

= U −
∑

{(n1,n2)∈I:l=nf+1}
Vn1,n2 +

∑

{(n1,n2)∈I:l=nf}
Vn1,n2

=
∑

{(n1,n2)∈I:l=nf+1}
(U − Vn1,n2)−

∑

{(n1,n2)∈I:l=nf}
(U − Vn1,n2) .

The sums are running over all combinations, n1, n2, where n1 +n2 = nf + 1
and n1 + n2 = nf , respectively, where n1, n2 > 1:

U − V c
nf

=
∑

n1+n2=nf +1

(U − Vn1,n2)−
∑

n1+n2=nf

(U − Vn1,n2)

Using the error expansion (3.18), we have:

U − V c
nf

=
∑

n1+n2=nf +1

(
C1(hn1)h

2
n1

+ C2(hn2)h
2
n2

+D(hn1 , hn2)h
2
n1
h2

n2

)

−
∑

n1+n2=nf

(
C1(hn1)h

2
n1

+ C2(hn2)h
2
n2

+D(hn1 , hn2)h
2
n1
h2

n2

)

If the terms in the sums are rearranged, we have:

∑

n1+n2=nf +1

C1(hn1)h
2
n1
−

∑

n1+n2=nf

C1(hn1)h
2
n1

=

nf∑

n1=1

C1(hn1)h
2
n1
−

nf−1∑

n1=1

C1(hn1)h
2
n1

= C1(hnf
)h2

nf

and

∑

n1+n2=nf +1

C2(hn2)h
2
n2
−

∑

n1+n2=nf

C2(hn2)h
2
n2

= C2(hnf
)h2

nf

51



Chapter 3. Multi-asset option pricing with the PDE method

Now using hn1hn2 = 2−(n1+n2), the combined error term reads:
∑

n1+n2=nf +1

D(hn1 , hn2)h
2
n1
h2

n2
−

∑

n1+n2=nf

D(hn1 , hn2)h
2
n1
h2

n2

= h2
nf +1

∑

n1+n2=nf+1

D(hn1 , hn2)− h2
nf

∑

n1+n2=nf

D(hn1 , hn2)

= h2
nf


1

4

∑

n1+n2=nf+1

D(hn1 , hn2)−
∑

n1+n2=nf

D(hn1 , hn2)




Summarising, we have for the error:

U − V c
nf

= C1(hnf
)h2

nf
+C2(hnf

)h2
nf

+ h2
nf


1

4

∑

n1+n2=nf+1

D(hn1 , hn2)−
∑

n1+n2=nf

D(hn1 , hn2)




Now the upper bound of this error equals:

|U − V c
nf
| 6 |C1(hnf

)|h2
nf

+ |C2(hnf
)|h2

nf

+

∣∣∣∣∣∣
h2

nf


1

4

∑

n1+n2=nf+1

D(hn1 , hn2)−
∑

n1+n2=nf

D(hn1 , hn2)




∣∣∣∣∣∣

6 |C1(hnf
)|h2

nf
+ C2(hnf

)|h2
nf

+
1

4
h2

nf

∣∣∣∣∣∣

∑

n1+n2=nf +1

D(hn1 , hn2)

∣∣∣∣∣∣
+ h2

nf

∣∣∣∣∣∣

∑

n1+n2=nf

D(hn1 , hn2)

∣∣∣∣∣∣

6 κh2
nf

+ κh2
nf

+
1

4
κnfh

2
nf

+ κ(nf − 1)h2
nf

= κh2
nf

(
1 +

5

4
nf

)

= κh2
nf

(
1 +

5

4
log2 h

−1
nf

)
.

All terms with n1, n2 6= nf cancel out and the hnf
terms remain. However,

all terms which are dependent on the product of hn1 and hn2 accumulate
leading to an additional log2(h

−1
nf

) term. This is characteristic for the sparse
grid combination technique. Summarising, the error for the two-dimensional
can be stated with the following order of accuracy [10, 9]:

U − V c
nf

= O
(
h2

nf
log2 h

−1
nf

)
. (3.19)

This error expansion exists if the analytic solution is sufficiently smooth,
which means that the solution should have bounded mixed derivatives [25,
20, 11].
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3.3. Sparse grids

3.3.3 Basic combination in higher dimensions

We continue with the general combination of solutions on d−dimensional
coarse sub-grids to obtain a mimic of the full grid solution of a d−dimensional
problem with 2nf grid points per coordinate. For the two-dimensional case,
we combined two layers of solutions to obtain the combined sparse grid solu-
tion. It is obvious that for a general d−dimensional problem, the number of
layers to combine a proper sparse grid solution is d. First of all, we generalise
the multi-index to a d-dimensional version.

Definition 3.3.1. A multi-index I belonging to a d−dimensional sparse
grid based on a mimic of a full grid with 2nf grid points per coordinate is a
collection of sets of d values (n1, n2, . . . , nd) such that:

• 1 6 ni 6 nf

• The sum of the numbers in each element for each sub-grid is equal to
the layer number.

Furthermore, we define a layer as a set of sub-grids and we shall see that
a layer and a multi-index are closely related to each other

Definition 3.3.2. A layer in a d−dimensional sparse grid solution repre-
sents a set of sub-grids. The total number of grid points in each sub-grid
on a particular layer is the same. All sub-grids are ordered according to
a multi-index. Each layer has a unique layer number that is based on the
dimensionality, d, and the value of nf . A d−dimensional combined sparse
grid solution has d layers and the layer number lj of the j−th layer reads:

lj = nf + d− j 1 6 j 6 d.

Now the sparse grid combination for a d−dimensional grid is defined as:

Definition 3.3.3. The solution of a sparse grid problem on a d−dimensional
grid based on a mimic of a full grid with 2nf grid points per coordinate is
the combination of all solutions on all sub-grids provided by d layers. This
combination is defined as:

V c
nf

=

d∑

j=1

(−1)d−j

(
d− 1
j − 1

) ∑

Pd
i=1 ni=lj

Vn1,n2,...,nd
(3.20)

with lj presented in Definition 3.3.2.

Remark 3.3.4. In equation (3.20), we recognise equation (3.17) by setting
d = 2 and for the layer numbers l1 = nf + d− 1 and l2 = nf + d− 2.

53



Chapter 3. Multi-asset option pricing with the PDE method

Example 3.3.5. Now the construction for a three-dimensional problem fol-
lows from equation (3.20). Choosing d = 3 we have:

V c
nf

=
∑

l1=nf+2

Vn1,n2,...,nd
− 2

∑

l2=nf +1

Vn1,n2,...,nd
+
∑

l3=nf

Vn1,n2,...,nd
(3.21)

If U is again the exact solution of the problem, then we have for the
error:

U − V c
nf

= U −




∑

l1=nf+2

Vn1,n2,n3 − 2
∑

l2=nf+1

Vn1,n2,n3 +
∑

l3=nf

Vn1,n2,n3




=
∑

l1=nf +2

(U − Vn1,n2,n3)− 2
∑

l2=nf+1

(U − Vn1,n2,n3)

+
∑

l3=nf

(U − Vn1,n2,n3)

For the three-dimensional case, a similar error expansion as equation (3.18)
exists for sufficiently smooth solutions:

U − Vn1,n2,n3 = C1(hn1)h
2
1 + C2(hn2)h

2
n2

+ C3(hn3)h
2
n3

+D1(hn1 , hn2)h
2
n1
h2

n2
+D2(hn1 , hn3)h

2
n1
h2

n3

+D3(hn2 , hn3)h
2
n2
h2

n3
+ E(hn1 , hn2 , hn3)h

2
n1
h2

n2
h2

n3

(3.22)

Assume that the functions Ck(hni),Dk(hni , hnj ) and E(hn1 , hn2 , hn3) with
k = 1, 2, 3 are bounded above by a constant κ. The three sums are running
over all combinations of n1, n2 and n3 such that the sum of these ni is equal
to lj :

U − V c
nf

=
∑

n1+n2+n3=nf+2

(U − Vn1,n2,n3)− 2
∑

n1+n2+n3=nf +1

(U − Vn1,n2,n3)

+
∑

n1+n2+n3=nf

(U − Vn1,n2,n3)
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Using equation (3.22), we distinguish different error terms. First the error
terms which are dependent on only one hn1 :

∑

n1+n2+n3=nf +2

C1(hn1)h
2
n1
− 2

∑

n1+n2+n3=nf+1

C1(hn1)h
2
n1

+
∑

n1+n2+n3=nf

C1(hn1)h
2
n1

=

nf∑

n1=1

(nf − n1 + 1)C1(hn1)h
2
n1
− 2

nf−1∑

n1=1

(nf − n1)C1(hn1)h
2
n1

+

nf−2∑

n1=1

(nf − n1 − 1)C1(hn1)h
2
n1

=

nf−2∑

n1=1

((nf − n1 + 1)− 2(nf − n1) + (nf − n1 − 1))C1(hn1)h
2
n1

+ ((nf − (nf − 1) + 1)− 2(nf − (nf − 1)))C1(hnf−1)h
2
nf−1

+ (nf − nf + 1)C1(hnf
)h2

nf

= C1(hnf
)h2

nf

where we used

∑

n1+n2+n3=nf +2

C1(hn1)h
2
n1

=

nf∑

n1=1

(nf − n1 + 1)C1(hn1)h
2
n1
.

This relation holds because if n1 = nf , then n2 = n3 = 1 gives one possible
combination. If for example n1 = 1, then there are nf combinations to
make n2 +n3 = nf +1 as in Section 3.3.2. The same argumentation hold for
the other terms. For C2 and C3, the same relations hold. Next the terms
dependent on hn1 and hn2 . It is easy to see that:

∑

n1+n2+n3=nf+2

D1(hn1 , hn2)h
2
n1
h2

n2
=

∑

n1+n26nf+1

D1(hn1 , hn2)h
2
n1
h2

n2
.
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Combining all D1 terms, we find:

∑

n1+n2+n3=nf+2

D1(hn1 , hn2)h
2
n1
h2

n2
− 2

∑

n1+n2+n3=nf+1

D1(hn1 , hn2)h
2
n1
h2

n2

+
∑

n1+n2+n3=nf

D1(hn1 , hn2)h
2
n1
h2

n2

=
∑

n1+n26nf−1

(1− 2 + 1)D1(hn1 , hn2)h
2
n1
h2

n2

+
∑

n1+n2=nf

(1− 2)D1(hn1 , hn2)h
2
n1
h2

n2
+

∑

n1+n2=nf +1

D1(hn1 , hn2)h
2
n1
h2

n2

=
∑

n1+n2=nf+1

D1(hn1 , hn2)h
2
n1
h2

n2
−

∑

n1+n2=nf

D1(hn1 , hn2)h
2
n1
h2

n2

=


1

4

∑

n1+n2=nf+1

D1(hn1 , hn2)−
∑

n1+n2=nf

D1(hn1 , hn2)


h2

nf

where the last step is already shown in Section 3.3.2. Again similar results
hold for D2 and D3. Finally for the E−terms we find:

∣∣∣∣∣∣

∑

n1+n2+n3=nf+2

E(hn1 , hn2 , hn3)h
2
n1
h2

n2
h2

n3

∣∣∣∣∣∣

6
∑

n1+n2+n3=nf +2

|E(hn1 , hn2 , hn3)| h2
n1
h2

n2
h2

n3

=h2
nf +2

∑

n1+n2+n3=nf+2

|E(hn1 , hn2 , hn3)|

6κ
nf (nf + 1)

2
h2

nf +2

The last expression follows from the number of summations in the combina-
tion n1 + n2 + n3 = nf + 2, which is equal to 1

2nf (nf + 1). Now combining
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all terms and taking the upper bound of the error we obtain:

|U − V c
nf
| 6 |C1(hnf

)|h2
nf

+ |C2(hnf
)|h2

nf
+ |C3(hnf

)|h2
nf

+

∣∣∣∣∣∣



1

4

∑

n1+n2=nf +1

D1(hn1
, hn2

)−
∑

n1+n2=nf

D1(hn1
, hn2

)



h2
nf

∣∣∣∣∣∣

+

∣∣∣∣∣∣



1

4

∑

n1+n3=nf +1

D2(hn1
, hn3

)−
∑

n1+n3=nf

D2(hn1
, hn3

)



h2
nf

∣∣∣∣∣∣

+

∣∣∣∣∣∣


1

4

∑

n2+n3=nf +1

D3(hn2
, hn3

)−
∑

n2+n3=nf

D3(hn2
, hn3

)


h2

nf

∣∣∣∣∣∣

+

∣∣∣∣κ
nf(nf + 1)

2
h2

nf+2 − 2κ
nf(nf − 1)

2
h2

nf +1 + κ
(nf − 2)(nf − 1)

2
h2

nf

∣∣∣∣

6 3κh2
nf

+ 3κh2
nf

(
1

4
nf + nf − 1

)

+ κh2
nf

(
1

16

nf (nf + 1)

2
+

2

4

nf (nf − 1)

2
+

(nf − 2)(nf − 1)

2

)

= κh2
nf

(
1 +
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32
log2 h

−1
nf

+
25

32

(
log2 h

−1
nf

)2
)
≈ O

(
h2

nf

(
log2 h

−1
nf

)2
)
.

Only terms of the highest order are taken into account and we see that we
have a square of the extra log2 term. This square comes from the combi-
nation of the three different values of hn1 , hn2 and hn3 . It is obvious that a
power of d−1 occurs in d−dimensional problems, by use of the combination
of all different values of hn1. Therefore the order of the accuracy of a stan-
dard sparse grid combination technique for a d−dimensional problem with
a sufficiently smooth solution reads:

|U − V c
nf
| = O

(
h2

nf

(
log2 h

−1
nf

)d−1
)
. (3.23)

Similar to the two-dimensional case, the meaning of sufficiently smooth
solution that it should have a bounded mixed derivative. Option pricing
problems have a non-differentiability in the contract function. Due to this
non-differentiability, the solution will have mixed derivatives, which are not
bounded. We will show that, with the help of coordinate transformations in
the option pricing problem (see Section 3.5), this effect will be reduced and
accurate solutions can be obtained.

With equation (3.20) and (3.23), we have the ingredients of the sparse
grid method for a d−dimensional problem. We conclude with the com-
putation of the total number of sub-grids needed for a single sparse grid
computation. Per layer, the number of sub-grids reads:

Zj =

(
nf + d− j − 1

d− 1

)
(3.24)
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and the total number of sub-problems to solve in a combined sparse grid
problem reads:

Z =

d∑

j=1

Zj =

d∑

j=1

(
nf + d− j − 1

d− 1

)

=
nf + d− 1

d

(
nf + d− 2
d− 1

)
− nf − 1

d

(
nf − 2
d

) (3.25)

Example 3.3.6. For the two-dimensional case, we see that with nf = 4 and
d = 2 we have Z1 = 4 and this gives the multi-index [(4, 1), (3, 2), (2, 3), (1, 4)]
corresponding to the sub-grids [(16 × 2), (8 × 4), (4 × 8), (2 × 16)] and we
find Z1 = 3 with the multi-index [(3, 1), (2, 2), (1, 3)] corresponding to the
sub-grids [(8× 2), (4 × 4), (2 × 8)]. We see that Z = 7 according to equation
(3.25).

The sub-grids coming from the multi-index belonging to the j−th layer
of a d−dimensional sparse grid have, according to the layer number in Def-
inition 3.3.2,

Nj = 2nf +d−j (3.26)

points per sub-grid. Finally, the total complexity - i.e. the total number of
unknowns - reads:

N =

d∑

j=1

NjZj =

d∑

j=1

2nf +d−j

(
nf + d− j − 1

d− 1

)
(3.27)

Example 3.3.7. Consider a seven-dimensional problem with nf = 10.
Then the full grid problem should have 270 unknowns. In terms of computer
memory this is more than 240 GB for storing the solution vector. This is
impossible, even on a hard-disc drive. However, the total sparse grid com-
plexity has approximately 229 unknowns and this can be handled by many
computer systems, since each sub-problem need not be computed at the same
time on the same machine. The maximum problem size is 216 unknowns.

Remark 3.3.8. A final remark is about a special case when nf < d. Then
following the definition of the multi-index, there is at least one empty multi-
index. Otherwise, there is no combination possible such that

∑d
i=1 ni =

d − d′ , d′ > 0 with the restriction that ni > 1. This case is known as an
incomplete sparse grid solution.

3.3.4 Combination technique for general grids

The one-sided difference equation defined in equation (2.11) requires at least
three adjacent grid points. Furthermore the fourth order scheme (2.13)
requires five adjacent points. Therefore, the minimum number of grid points
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for each coordinate should be higher than two for the sparse grid solution.
The consequence is a modification in the combination technique for the
sparse grid case. Another reason to modify the combination technique, is the
construction of grids with different numbers of grid points per coordinate, so-
called non-equidistant grids, for example a four-dimensional grid with (256×
64× 32× 16) points. The reason to mimic a full grid with different numbers
of grid points per coordinate comes from the coordinate transformation to
be developed in Section 3.5. With this coordinate transformation, it may
be possible to choose fewer grid points for certain coordinates.

The construction of the multi-indices does not change, but each sub-grid
is multiplied with constants ci, to mimic the original full grid. Hence each
element from a multi-index represents a sub-grid with ci2

ni grid points per
coordinate. Now the basis is defined as the minimum number of grid points
in each sub-grid. With the basis and the coefficients ci together it is possible
to construct a mimic of non-equidistant grids.

Definition 3.3.9. The basis b, of a sparse grid combination technique,
represents the minimum number of grid points per coordinate, which is 2b. If
the basis is equal to one, then we deal with the standard sparse combination
technique.

A different basis than b = 1 leads to a different sparse grid combination,
if a basis is applied as then the sparse grid technique combination is a mimic
of the full grid which has sizes 2ns with ns defined as:

ns = nf − b+ 1. (3.28)

To obtain the proper sub-grids, each sub-grid coming from the multi-index
is multiplied by ci = 2b−1.

Example 3.3.10. Consider a sparse grid combination to mimic a grid of
64 × 64. Then we have nf = 6. Suppose, we require at least eight points
per coordinate and thus we have b = 3 and by equation (3.28) ns = 4. The
multi-indices and sub-grids are now:

[(4, 1), (3, 2), (2, 3), (1, 4)] −→ [(64, 8), (32, 16), (16, 32), (8, 64)]

[(3, 1), (2, 2), (1, 3)] −→ [(32, 8), (16, 16), (8, 32)]

and we see that these multi-indices are the same ones as in Example 3.3.6,
but the corresponding sub-grids are different.

For the error expansion in two dimensions, we now have:

U − V c
nf

=
∑

(n1,n2)∈I:l=ns+1

(U − Vn1,n2)−
∑

(n1,n2)∈I:l=ns

(U − Vn1,n2),
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but now Vn1,n2 is a solution on a sub-grid with mesh sizes ĥni = (ci2
ni)−1 =

2−b+12−ni = 2−b+1hni . With the error expansion in equation (3.18) we have:

U − V c
nf

=
∑

n1+n2=ns+1

(
C1(ĥn1)ĥ

2
n1

+ C2(ĥn2)ĥ
2
n2

+D(ĥn1 , ĥn2)ĥ
2
n1
ĥ2

n2

)

−
∑

n1+n2=ns

(
C1(ĥn1)ĥ

2
n1

+ C2(ĥn2)ĥ
2
n2

+D(ĥn1 , ĥn2)ĥ
2
n1
ĥ2

n2

)

=

ns∑

n1=1

C1(ĥn1)ĥ
2
n1
−

ns−1∑

n1=b

C1(ĥn1)ĥ
2
n1

+

ns∑

n2=1

C2(ĥn2)ĥ
2
n2
−

ns−1∑

n2=b

C2(ĥn2)ĥ
2
n2

+
∑

n1+n2=ns+1

D(ĥn1 , ĥn2)ĥ
2
n1
ĥ2

n2
−

∑

n1+n2=ns

D(ĥn1 , ĥn2)ĥ
2
n1
ĥ2

n2

Because ĥns = 2−b+1hns = hnf
according to equation (3.28) and ĥn1 ĥn2 =

2−b+1hn12
−b+1hn2 the error reads:

U − V c
nf

= C1(ĥns)h
2
nf

+ C2(ĥns)h
2
nf

+
∑

n1+n2=ns+1

D(ĥn1 , ĥn2)2
−4b+4h2

ns+1

−
∑

n1+n2=ns

D(ĥn1 , ĥn2)2
−4b+4h2

ns

= C1(ĥns)h
2
nf

+ C2(ĥns)h
2
nf

+ 2−2b+2h2
nf

(
1

4

∑

n1+n2=ns+1

D(ĥn1 , ĥn2)−
∑

n1+n2=ns

D(ĥn1 , ĥn2)

)

We see that only the number of combinations in the mixed term is different
and as it is multiplied by a different factor. Following the same procedure
for the error expansion as in Section 3.3.2, we have:

|U − V c
nf
| 6 2κh2

nf
+ 2−2b+2κh2

nf

(
1

4
ns + (ns − 1)

)

= 2κh2
nf

+ 2−2b+2κh2
nf

(
5

4
ns − 1

)

= 2κh2
nf

+ 2−2b+2κh2
nf

(
5

4
(nf − b) +

1

4

)

6 κh2
nf

(
2 + 5 · 2−2bnf

)
≈ O

(
h2

nf
log2

(
h−1

nf

))
.

The approximation in the last step is dependent on the value of b. If b is
larger, then the influence of logarithmic term is weaker and the convergence
ratio will tend to the full grid convergence ratio. For the three-dimensional
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case, we can find that:

|U − V c
nf
| 6 3κh2

nf
+ 3κh2

nf
2−2b+2

(
5

4
(nf − b)

)

+ 2−(4b+4)κh2
nf

1

16

(nf − b+ 1)(nf − b+ 2)

2

+ 2−(4b+4)κh2
nf

(nf − b+ 1)(nf − b)
4

+ 2−(4b+4)κh2
nf

(nf − b− 1)(nf − b)
2

.

Three different two-dimensional sparse grids are presented in Figure 3.2 and
the effect on the theoretical convergence ratio is presented in Figure 3.3.
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Figure 3.2: Construction of a 2D sparse grid: combined solution
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Figure 3.3: Theoretical error convergence of sparse grids with a different
value of b.

Now, the non-equidistant grids follows from choosing ci differently. The
basis will be defined by b = log2(min ci) + 1. The sparse grid combination
is again a mimic of a full grid with 2ns grid points per coordinate and ns is
defined in equation (3.28), whereby nf = log2 minNi. The error expansion
of these grids can be approximated by the same expansion.
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Example 3.3.11. Consider a two-dimensional grid with (16 × 64) grid
points. Now we have nf = 4 and c1 = 1 and c2 = 4. So, it follows that
b = 1 and ns = 4. Hence the multi-indices and set of sub-grids are:

[(4, 1), (3, 2), (2, 3), (1, 4)] ⇒ [(16, 8), (8, 16), (4, 32), (2, 64)]

[(3, 1), (2, 2), (1, 3)] ⇒ [(8, 8), (4, 16), (2, 32)].

and again we see that these multi-indices are the same as in Example 3.3.6
or Example 3.3.10, but the corresponding sub-grids are different.

The next example is a combination of the two different cases.

Example 3.3.12. Consider a two-dimensional grid with sizes (256 × 64)
and furthermore we require at least eight points per coordinate, so b = 3.
We already have c1 = 4 and c2 = 1, but with the extra requirement, we
simply multiply the basis with the coefficients: c1 = 4 ·2b−1 = 16 and c2 = 4.
Then it follows that ns = 4 and therefore we see for the multi-index:

[(4, 1), (3, 2), (2, 3), (1, 4)] ⇒ [(256, 8), (128, 16), (64, 32), (32, 64)]

[(3, 1), (2, 2), (1, 3)] ⇒ [(128, 8), (64, 16), (32, 32)].

Again, we have different sub-grids from the same multi-indices.

Remark 3.3.13. If c1 = c2 = 5, then the basis cannot be defined, but we
can construct the multi-index in a similar way. For example, if ns = 4 (note
that ns can be prescribed as well), we have:

[(4, 1), (3, 2), (2, 3), (1, 4)] ⇒ [(80, 10), (40, 20), (20, 40), (10, 80)]

[(3, 1), (2, 2), (1, 3)] ⇒ [(80, 10), (20, 20), (10, 40)].

and we see that with proper choices of ci it is possible to construct gen-
eral grids. In this thesis, we do not use this and we only construct (non-
)equidistant grids with numbers of grid points that are a power of two.

If the basis of the sparse grid combination is known, then by using equa-
tion (3.28) and (3.24), the number of sub-grids in a layer j reads:

Zj =

(
nf + d− b− j

d− 1

)
. (3.29)

The complexity in a sub-grid or number of unknowns in the j-th layer reads:

Nj = 2ns+d−j
d∏

i=1

ci. (3.30)

The total complexity reads:

N =

d∑

j=1

NjZj =

d∏

i=1

ci

d∑

j=1

2ns+d−j

(
nf + d− b− j

d− 1

)
. (3.31)
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3.3.5 Combinations with an extra layer

Equation (3.20) is referred as the standard combination technique. However
we will also present an experiment with a different type of combination tech-
nique, where the coefficients come from the backward difference formulae:

V c
nf

=
3

2

∑

Pd
i=1 ni=nf+2

Vn1,n2 − 2
∑

Pd
i=1 ni=nf +1

Vn1,n2

+
1

2

∑

Pd
i=1 ni=nf

Vn1,n2,
(3.32)

with the coefficients of a BDF2 scheme [26]. With vectors q =
1

2
[3,−4, 1]

and:

w =

[(
d− 2

0

)
,

(
d− 2

1

)
, . . . ,

(
d− 2
d− 2

)]
, (3.33)

the d-dimensional combination technique in this setting is written as (3.20):

V c
nf

=

d∑

j=1

(−1)jaj

∑

l=n+j

Vn1,n2,...,nd
(3.34)

with aj the j-th element of a = q ⋆w, where ⋆ is the convolution operator.
Note that this method uses one additional finer layer compared to the basic
sparse grid method (3.20). With the splitting of the error as given in (3.18),
the error for the two-dimensional Poisson case can be bounded by:

|U − V c
nf
| ≤ 35

32
h2

nf
log2(h

−1
nf

).

3.3.6 Reisinger’s sparse grid method

The third combination technique evaluated is based on the basic combina-
tion technique combined with a multivariate extrapolation [40, 41]. The
combination equation then reads:

V c
nf

=

nf+2d−1∑

ℓ=nf

∑

l=ℓ

VI




j=min{ℓ−nf ,d−1}∑

j=max{0,ℓ−nf−d}
ajαℓ−nf−d

(
N(I)

ℓ− nf − j

)
 ,

aj = (−1)d−1−j , αj = (−4)j(−3)−d.

(3.35)

N(I) denotes the number of nonzero elements in multi-index I. (The ele-
ments of the multi-indices for this type of combination can be zero.) It can
be proven that this method is fourth order accurate and the absolute
error for the Poisson equation reads [40]:

|U − V c
nf
| ≤ 10

3

K

(d− 1)!

(
85

24

)d−1 (
log2(h

−1
nf

) + 2d− 1
)d−1

h4
nf
. (3.36)
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An error splitting as in (3.18) does not guarantee fourth order accuracy
when employing fourth order finite differences within the basic sparse grid
technique [40], but the combination in equation (3.35) does..

A final remark on the three variants of the sparse grid technique is on
the number of underlying grids, and thus on the method’s complexity. For
a d-dimensional problem the basic sparse grid method uses d − 1 “layers”
of grids, the BDF sparse grid method employs d-, and Reisinger’s method
2d− 1-layers.

3.4 Sparse grid test experiments

It is now reasonable to evaluate the behaviour of the sparse grid combination
technique with some test experiments. The first two experiments are based
on the multi-dimensional Poisson equation and the time-dependent heat
equation respectively. For both the equations we use a test function so
that the solution is already prescribed and serves for a comparison with the
numerical solution. The Poisson equation is solved for up to d = 8 and the
heat equation is solved up to d = 5 plus the additional time dimension. In
Section 3.4.3, we show that the Black-Scholes equation can be transformed
to the heat equation [31] and we evaluate the sparse grid technique for the
transformed Black-Scholes equation.

3.4.1 Laplace equation

The sparse grid technique is used for the d−dimensional Poisson equation.
The test function chosen here for this sparse grid stationary experiment
reads:

V (S1, S2, . . . , Sd) =

d∏

i=1

eS
2
i = exp

(
d∑

i=1

S2
i

)
, (3.37)

with Ω = [0, 1]d. The approximation is done for 2 6 d 6 8 with a mimic
of the grid with nf = 10. The mimic of the full grid is done with ci = 1
and b = 1. The discretisation technique in Section 3.2 is used for each
sub-grid. Each discretisation leads to a linear system, that is iteratively
solved by the Bi-CGSTAB method with multigrid as a preconditioner. We
chose to use the Bi-CGSTAB method, because the problems we discuss in
the rest of the thesis have non-symmetric matrices and the Bi-CGSTAB
methods perform satisfactorily for the computations. The iterative solver
is constructed in another project. Details can be found in [6] and [5]. The
boundary conditions for the d−dimensional problem are directly computed
from the test function and therefore we have Dirichlet boundary conditions.

In a full grid setting the maximum problem would have a size of 10248 =
280, i.e., 253 GB of memory, which is - of course - immensely huge. The
maximum size of an 8D problem in the sparse grid setting chosen here is
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1024 × 27 = 217, which is only 1 MB. The solution at the central point in
the domain xi = 0.5 is computed here. The results are described in detail
for d = 2 and d = 8 in Table 3.1 and the error and convergence for all values
of d are plotted in Figure 3.4. In the table, the time indicated is the total
computational time for the computation of the solutions on all sub-grids (see
equation (3.25)) and the interpolation to the central point. The number of
problems Z is as in equation (3.25) and the theoretical convergence Th.Conv
from equation (3.23).

Table 3.1: Time-independent experiments of problem (3.37) using sparse
grids. TOP: The two-dimensional case. BOTTOM: The eight-dimensional
case. Column one gives nf , corresponding with the mimic of the full grid.

nf Value Error Conv Time Z Th. Conv

d=2

4 1.65 5.52 · 10−3 3.05 0.04 7 3.00
5 1.65 1.72 · 10−3 3.21 0.07 9 3.20
6 1.65 5.16 · 10−4 3.34 0.10 11 3.33
7 1.65 1.50 · 10−4 3.43 0.12 13 3.43
8 1.65 4.30 · 10−5 3.50 0.16 15 3.50
9 1.65 1.21 · 10−5 3.55 0.25 17 3.56
10 1.65 3.36 · 10−6 3.60 0.33 19 3.60

d=8

4 7.63 2.43 · 10−1 1.50 18.51 165 0.53
5 7.54 1.48 · 10−1 1.64 111.07 495 0.84
6 7.47 8.33 · 10−2 1.77 578.55 1287 1.12
7 7.43 4.40 · 10−2 1.89 2404.47 3003 1.36
8 7.41 2.20 · 10−2 2.00 9067.30 6435 1.57
9 7.40 1.04 · 10−2 2.10 32925.66 12869 1.75
10 7.39 4.76 · 10−3 2.19 106826.59 24301 1.91

The table and the figures show the dependence of the number of di-
mensions in the convergence according to the theoretical convergence ratio
in equation (3.23). Although the theoretical convergence of the sparse grid
method is low when d is high at small numbers of nf , the convergence in this
test experiment is reasonable. A reason may be the smoothness of the ana-
lytic solution. The computational time shown in Table 3.1 is the total time
required to solve the Z sub-problems. For the eight-dimensional problem,
we have eight layers. In the case nf = 10, the complexity ranges from 210 to
217 unknowns. The latter number of unknowns occur in the first layer and
this layer requires the biggest number of sub-problems: Z1 = 11440. Hence,
the largest part of the computational time is used to solve the problems in
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Figure 3.4: LEFT: Decay of the error |U − V c
nf
|, with U the exact solution

(3.37). RIGHT: Convergence of the error in the left picture.

this layer. However, if the solution of the sub-problems would be parallelised
over ten processors, then the total computational time should be 2.8 hours.
The parallelisation of the sparse grid method will be discussed in Section
4.3.

Now, we employ the different combination techniques, as defined in Sec-
tion 3.3.5 and 3.3.6, with a different prescribed solution.

V (S1, S2, . . . , Sd) = exp

d∏

i=1

Si (3.38)

Again, second order central differences are used for the discretisation of the
Poisson equation. We only perform a two-dimensional experiment, since the
two-dimensional case gives sufficient information. The numerical solution is
computed at the central point of the grid: (1

2 ,
1
2). In Table 3.2 the error and

the convergence ratio are presented for the full grid and the three different
sparse grid combination techniques. We see that the BDF2 combination
technique shows an irregular convergence pattern, but shows smaller errors.
The method developed by Reisinger performs very satisfactorily. For higher-
dimensional problems, however, these techniques with extra layers of sub-
problems become too expensive, especially since in computational finance
we are not interested in extremely high accuracy.

3.4.2 Multi-dimensional heat equation

For the time-dependent test case, we choose as the analytic solution,

V (t, S1, S2, . . . , Sd) = et
d∏

i=1

e
Si√

d = exp

(
t+

1√
d

d∑

i=1

Si

)
, (3.39)
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3.4. Sparse grid test experiments

Table 3.2: 2D Poisson test problem. Second order discretisation: error in
point (1

2 ,12 ) with hnf
= 2−nf in the full grid case. Three different combina-

tion techniques.

Full (3.20)

nf error Conv error Conv

1 2.1 · 10−4 2.1 · 10−4

2 1.1 · 10−4 1.9 2.6 · 10−4 0.8
3 3.2 · 10−5 3.4 1.3 · 10−4 1.9
4 8.4 · 10−6 3.8 5.3 · 10−5 2.5
5 2.1 · 10−6 4.0 1.8 · 10−5 2.9
6 5.3 · 10−7 4.0 5.8 · 10−6 3.1
7 1.3 · 10−7 4.0 1.8 · 10−6 3.3

(3.34) (3.35)

nf error Conv error Conv

1 2.8 · 10−4 3.3 · 10−5

2 7.2 · 10−5 3.9 3.5 · 10−6 9.4
3 1.2 · 10−5 5.9 3.3 · 10−7 10.6
4 9.3 · 10−7 13.1 2.9 · 10−8 11.2
5 3.7 · 10−7 2.5 2.5 · 10−9 11.7
6 2.5 · 10−7 1.5 2.0 · 10−10 12.3
7 1.8 · 10−7 2.4 1.6 · 10−11 12.4

with Ω = [0, 1]d, t > 0. The approximation is done for 2 6 d 6 5 with nf =
10 as the maximum number per coordinate in the sparse grid combination
technique and ci = 1. The solution of the central point in the domain
xi = 0.5 is computed at time t = 0.1. The number of time steps used is
fixed at 400. Boundary as well as the initial conditions are obtained from
the prescribed solution.

The grid convergence results are described in detail for d = 2 and d = 5
in Table 3.3 and the errors and convergence for all values of d are plotted
in Figure 3.5. In the table, again “time” is the total computational time
for the complete sparse grid solution including the interpolation and time
integration. The number of problems is as in (3.25) and the theoretical
convergence from equation (3.23).

Again, the results in the table and figures show the dependence on the
number of dimensions in the error. The total time for the d = 5 computation
is relatively small per sub-grid and the accuracy results are also satisfactory
for the time-dependent case.
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Chapter 3. Multi-asset option pricing with the PDE method

Table 3.3: Time-dependent experiments with solution (3.39) using sparse
grids. TOP: is the two-dimensional case. BOTTOM: five dimensional case.
Column one gives the maximum number of cells per coordinate.

X = 0.5d Control

Grid Value Error Conv Time #probl Th. Conv

d=2

8 2.24 1.37 · 10−4 2.96 2.14 5 2.67
16 2.24 4.36 · 10−5 3.14 5.67 7 3.00
32 2.24 1.33 · 10−5 3.28 10.87 9 3.20
64 2.24 3.93 · 10−6 3.38 19.12 11 3.33
128 2.24 1.14 · 10−6 3.46 31.53 13 3.43
256 2.24 3.23 · 10−7 3.52 49.01 15 3.50
512 2.24 9.07 · 10−8 3.56 70.35 17 3.56
1024 2.24 2.56 · 10−8 3.54 99.82 19 3.60

d=5

8 3.38 9.67 · 10−5 1.98 9.02 21 0.79
16 3.38 4.45 · 10−5 2.17 36.99 56 1.27
32 3.38 1.92 · 10−5 2.32 129.77 126 1.64
64 3.38 7.83 · 10−6 2.45 436.85 251 1.93
128 3.38 3.06 · 10−6 2.56 1288.44 456 2.16
256 3.38 1.15 · 10−6 2.65 3658.62 771 2.34
512 3.38 4.24 · 10−7 2.72 11297.58 1231 2.50
1024 3.38 1.50 · 10−7 2.83 32266.03 1876 2.62
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Figure 3.5: LEFT: Decay of the error |U − V c
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|, U from (3.39). RIGHT:

Convergence of the error in the left picture.
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3.4. Sparse grid test experiments

3.4.3 Black-Scholes equation

The results of the solution of the heat equation in the previous section show
that the sparse grid method is a satisfactory alternative to reach reason-
able dimensionality for sufficiently smooth solutions. Moreover, the Black-
Scholes equation (1.9) can be transformed into a heat equation by using the
coordinates

yi =
1

σi
log Si +

1

σi
(r − δi −

1

2
σ2

i )(T − t) , τ = T − t , V ′ = V e−r(T−t)

Then it follows that the transformed equation reads:

∂V ′

∂τ
=

1

2

d∑

i=1

ρij
∂2V ′

∂yi∂yj

This can be written in matrix notation [31]:

∂V ′

∂τ
=

1

2
∇TΣ∇V ′,

where Σ is a symmetric positive semidefinite matrix for which Σij = σiσjρij.
Then there exists an orthogonal transformation:

QΣQT = diag(λi) = Λ,

with Λ the diagonal matrix with the eigenvalues of Σ. The transformation
reads x = Qy and it follows that the d-dimensional Black Scholes equation
can be reduced to the d-dimensional heat equation:

∂V ′

∂τ
=

1

2

d∑

i=1

λi
∂2V ′

∂x2
i

. (3.40)

Advantages of this transformation are the constant coefficients, the disap-
pearance of the first order terms and mixed derivatives, diagonal diffusion
and the availability of a Green’s function to change the partial differential
equation to an integral problem [57, 31, 40, 20]. But there are also dis-
advantages. Boundaries are now at ±∞. This is not useful for numerical
methods. The contract function,

∑d
i=1 Si − K, does not lie on a grid line

[40].
Equation (3.40) is now used as the last test experiment for the sparse

grid technique. The contract function of a basket call changes into the initial
condition:

V ′(0,x) = max

(
d∑

i=1

wie
σixi −K, 0

)
, (3.41)

This payoff function has a non-differentiability in the hyperplane where the
transformed basket sum equals the strike price. This will turn out to be
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Chapter 3. Multi-asset option pricing with the PDE method

problematic for the sparse grid solution of this problem. The option param-
eters chosen are: K = 40, r = 0.06, T = 1, σi = 0.25, δi = 0.04, ρij = 0.25
and wi = d−1.

The price of the option is computed for 2 6 d 6 5 where d represents
the number of assets in the basket. The outer domain boundaries are placed
at S = 5K to mimic infinity in (1.9). In the x−domain, this means that
Ω = [−σ−1

i log 5, σ−1
i log 5]d. The sparse grid approximation contains grids

with at maximum 1024 cells along a coordinate and with 128 time steps.
The results of the experiments are summarised in Table 3.4. The errors in
this table are computed as:

ǫnf
= |Vnf−1 − Vnf

| (3.42)

and these value present the decay of the error when the number of grid
points increases.

Table 3.4: Option prices of basket calls. TOP: Sparse grid option prices for
d = 2 and d = 3. BOTTOM: Option prices for the higher dimensions. n
represents the maximum number of point in one dimension

d=2 d=3

nf Value Error Value Error
3 2.291 5.11 · 10−1 2.102 4.51 · 10−1

4 2.727 7.60 · 10−2 2.498 5.46 · 10−2

5 2.801 1.10 · 10−3 2.562 1.00 · 10−2

6 2.807 4.23 · 10−3 2.563 9.04 · 10−3

7 2.811 8.56 · 10−3 2.562 9.87 · 10−3

8 2.807 4.65 · 10−3 2.555 3.28 · 10−3

9 2.803 7.72 · 10−4 2.554 1.39 · 10−3

10 2.803 6.52 · 10−4 2.553 3.61 · 10−4

d=4 d=5

3 1.983 4.32 · 10−1 1.896 4.32 · 10−1

4 2.364 5.05 · 10−2 2.273 5.42 · 10−2

5 2.429 1.45 · 10−2 2.343 1.57 · 10−2

6 2.427 1.19 · 10−2 2.341 1.36 · 10−2

7 2.422 7.02 · 10−3 2.331 3.97 · 10−3

8 2.420 5.35 · 10−3 2.335 7.88 · 10−3

9 2.417 2.69 · 10−3 2.330 2.28 · 10−3

10 2.413 1.29 · 10−3 2.326 1.77 · 10−3

In the table, satisfactory grid convergence is observed for the lower di-
mensional cases, but it is no longer regular. In particular when d increases
the convergence becomes irregular. The reason may be due to the non-
differentiability which is not at a grid line. An alternative is to use the
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3.5. Coordinate transformation

sparse grid technique based on a larger number of points in each dimension
(b at least 4 or 8) see Definition 3.3.1, but also in this case, the accuracy is
hampered by the fact that the initial condition is non-differentiable.

3.5 Coordinate transformation

Coordinate transformations -typically- are employed to transform a given
partial differential equation into another one whose solution is easier to
achieve. A first example of a multi-dimensional coordinate transformation
has been presented in Section 3.4.3. In basket option pricing an impor-
tant reason for using a coordinate transformation is to simplify the payoff
function (1.6) or (1.19). This function is non-differentiable along a hyper-
plane

∑d
k=1wkSk = K in the d-dimensional domain. This plane crosses the

Cartesian Si-grid, which hampers the accuracy of the sparse grid combina-
tion technique, described in Section 3.3 and presented in Section 3.4.3. A
general coordinate transformation from Sk to xi can be written in the form

xi = ζi (S1, S2, . . . , Sd) , (3.43)

Sk = ζ−1
k (x1, x2, . . . , xd) . (3.44)

We write xi = xi(S) and Sk = Sk(x) where S and x are d-dimensional
vectors. If the transformations (3.43) and (3.44) are applied to the partial
differential equation (1.9), it changes into

∂V

∂t
+

d∑

i=1

d∑

j=1

αij
∂2V

∂xi∂xj
+

d∑

i=1

βi
∂V

∂xi
− rV = 0, (3.45)

where

αij =

d∑

k=1

d∑

ℓ=1

akℓ
∂xi

∂Sk

∂xj

∂Sℓ
, (3.46)

βi =

d∑

k=1

d∑

ℓ=1

akℓ
∂2xi

∂Sk∂Sℓ
+

d∑

k=1

bk
∂xi

∂Sk
, (3.47)

with akℓ = 1
2ρkℓσkσℓSk(x)Sℓ(x) and bk = (r − δk)Sk(x).

The new coordinate x1 is now chosen equal to the basket value

x1 =

d∑

k=1

wkSk. (3.48)

With this coordinate the transformed contract function for the basket call
reads

Φ(T,x) = max{x1 −K, 0}. (3.49)
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This contract function is only dependent on x1 and thus non-differentiable
in only one coordinate direction. It now makes sense, for example, to use a
truncation of this coordinate as in the 1D case presented by Kangro [30]

xmax
1 = K exp(

√
2σ2T log 100).

We can, however, also safely use xmax
1 = 3K. With this coordinate trans-

formation, it may be possible to reduce the number of points in the other
coordinates, as stated in [40, 48].

For the definition of the remaining coordinates, two basic choices are
available: via a linear transformation or via a non-linear, normalised, trans-
formation.

3.5.1 Linear transformation

A linear coordinate transformation can be written in the form

x = GS, (3.50)

with G the transformation matrix. The first row of matrix G is defined by
the weights of the basket option. The other coefficients are chosen as follows
(see for example [48], Chapter 5)

gij =

{
−wj j = i− 1, i 6= 1,

wj j 6= i− 1, i 6= 1 ∨ i = 1.
(3.51)

Applying (3.51) to (3.46) and (3.47) gives

αij =
d∑

k=1

d∑

ℓ=1

akℓgikgjℓ, βi =
d∑

k=1

bkgik.

Note that ∂2xi/∂Sk∂Sℓ = 0 with this transformation, because xi is linear in
Sk. If αij is written out in terms of the xi-coordinates, using S = G−1x, we
obtain:

αij =
1

2

d∑

k=1

d∑

ℓ=1

d∑

m=1

d∑

p=1

ρkℓσkσℓgikgjℓγkmγℓpxmxp

with γkm elements of the inverse transformation matrix G−1.
The coordinate transformation must be non-singular. It is easy to see

that (3.51) is non-singular, as it can be transformed into



w1 w2 . . . wd−1 wd

−w1 w2 . . . wd−1 wd

w1 −w2 . . . wd−1 wd
...

...
. . .

...
...

w1 w2 . . . −wd−1 wd



→




w1 0 . . . 0 0
0 0 . . . 0 2wd

0 −2w2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −2wd−1 0



,
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which is obviously non-singular.
The boundary conditions transformation accordingly. Coordinate x1 is

defined on [0, xmax]. At x1 = 0 all asset prices are zero and therefore the
option price itself is also set to zero. This is a Dirichlet condition. The
linearity condition for x1 towards infinity remains valid; xmax

1 corresponds
with

∑
wkS

max
k . For the other coordinates xi, i 6= 1 we set linearity condi-

tions on the both boundaries, as these transformed coordinates do not have
their left-hand boundaries at xk = 0. Therefore, it is not true in general
that the coefficients of the particular derivatives vanish, which implies that
the use of the linearity conditions both at xi = xmin as on xi = xmax with
i > 1 makes good sense.

3.5.2 Non-linear transformation

It is also reasonable to employ a non-linear transformation, with normalised
coordinates xj , j > 1. By normalisation one can guarantee that the trans-
formed coordinate directions remain in a (d − 1)-dimensional unit hyper-
cube. This transformation was developed for equally distributed basket put
options (∀i, j wi = wj) in [40, 41]. With basket weights wk included, it reads

xi =





∑d
k=1wkSk i = 1,

wi−1Si−1∑d
k=i−1wkSk

i > 1.

(3.52)

Correspondingly, we find the inverse transformation

Sk =





1

w1
x1x2 k = 1,

1

wk
x1xk+1

∏k
j=1(1− xj) 1 < k < d,

1

wd
x1
∏d

j=1(1− xj) k = d.

(3.53)

Again the sum of the weighted assets in the basket is used for the first
coordinate. Before the new coefficients (3.46) and (3.47) are derived, we
define the following function

f̂ik :=





xk+1
∏k

j=i+1(1− xj) i < k < d,
∏k

j=i+1(1− xj) i < k = d,

xk+1 i = k < d,

1 i = k = d,

0 i > k.

(3.54)
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Using (3.54), the coefficients (3.46) are transformed to

α11 = x2
1

d∑

k=1

d∑

ℓ=1

ρ̂kℓf̂1kf̂1ℓ,

α1j = x1xj(1− xj)
d∑

k=1

d∑

ℓ=1

(ρ̂k,j−1 − ρ̂kℓ) f̂1kf̂jℓ, ∀1 < j ≤ d,

for i = 1. For i > 1:

αij = xi(1− xi)xj(1− xj)

d∑

k=1

d∑

ℓ=1

(ρ̂kℓ − ρ̂i−1,ℓ − ρ̂k,j−1 + ρ̂i−1,j−1) f̂ikf̂jℓ,

with ρ̂kℓ = ρ̂ℓk = 1
2ρkℓσkσℓ, and αij = αji. The coefficients (3.47) now

become

β1 =
d∑

k=1

(r − δk)f̂1k,

βi = xi(1− xi)

(
r − δ1 −

d∑

k=1

(
(r − δk) f̂ik

))
+

+ xi(1− xi)

(
d∑

ℓ=1

(−2ρ̂i−1,i−1xi + (2xi − 1)(ρ̂k,i−1 + ρ̂ℓ,j−1))

)

+ xi(1− xi)

d∑

ℓ=1

2(1 − xi)ρ̂kℓf̂ikf̂iℓ

The boundary conditions for x1 are the same as in the case of the linear
transformation. Furthermore, it can be shown that αij = 0 and βj = 0
for xj = 0 and xj = 1 with i > 1 and j > 1. This means that on these
boundaries, the coefficients of the derivatives with respect to xj vanish and
the natural boundary conditions can be applied.

We will compare the accuracy of basket option prices and hedge param-
eters after employing one of these grid transformations. In addition we will
evaluate the use of grid stretching in coordinate x1 as presented in Section
2.4.

3.5.3 Hedge parameters and coordinate transformation

The Greeks for the singe-asset option contracts were discussed in Section
1.5. For the multi-dimensional option contracts, we concentrate on ∆k, the
first derivative w.r.t. asset price k, Γk,k, the second derivative of the price
and the correlation parameter Γk,ℓ, (k 6= ℓ), based on the mixed derivative
of the price. We use numerical differentiation of the solution originating
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3.5. Coordinate transformation

from the sparse grid combination technique to obtain these Greeks, similar
to the method in Section 2.4. When using transformation and stretching
the equations for ∆k and Γk,ℓ read

∆k =
∂u

∂Sk
=

d∑

i=1

∂u

∂xi

∂xi

∂Sk
, (3.55)

Γk,ℓ =
∂2u

∂Sk∂sℓ
=

d∑

i=1

∂u

∂xi

∂2xi

∂Sk∂Sℓ
+

d∑

i=1

d∑

j=1

∂2u

∂xi∂xj

∂xi

∂Sk

∂xj

∂Sℓ
. (3.56)

In higher dimensions, we typically do not have the solution on the whole
domain available, as we work with only a set of sparse grid solutions. The
solution of the partial differential equation on a region in the d−domain
can, however, be obtained relatively easily by interpolation of the sparse
grid solutions.

Consider a point x = x0, where we wish to evaluate the option price
V , ∆k and Γk,ℓ. Then from each sub-grid we interpolate the solution to
a region around x0 with NR points in each direction, such that there are
enough points to use the proper difference equation to compute the hedge
parameter. This region is a subset of the finest full grid. This means a
successive interpolation to Nd

R points. The combination of all sub-grids is
then straightforward, because we need to combine the interpolated solutions
to the part of the finest grid. After this, we apply numerical differentiation
for obtaining the Greeks on the relevant part of the finest grid. Schematically
this is depicted in Figure 3.5.3.

As we use a higher order Lagrange interpolation for this purpose, we
need 4× d points adjacent to point x0. The point x0 is placed in the middle
of the region of interest. On each side of x0, we thus need two adjacent
points for the first and second derivatives and four adjacent points for the
mixed derivative.
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Figure 3.6: Representation of the interpolated ΩR from the sparse grid
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3.6 Option pricing experiments

In this section, the multi-dimensional Black-Scholes equation is solved nu-
merically for European basket call options, European digital basket call
options and Bermudan basket put options defined on three, four and five as-
sets. The aim here is to evaluate numerically the spatial accuracy achieved
by the numerical techniques presented above. In the test experiments, the
time step is therefore fixed at ∆t = 10−3. The upper bound of the domain
for the asset prices is Smax

i = 3K. As in our test experiments we do not
use more than 256 points per coordinate direction, the error of the time in-
tegration, O(∆t2), is negligible compared to the spatial discretisation error.
So, in these model experiments we focus on the sparse grid spatial accuracy
and neglect the effect of a discretisation in time.

3.6.1 Basket options

Three-dimensional full grid computations for a three-asset option are used
as a reference to evaluate the influence of the coordinate transformation,
the grid stretching, the use of fewer points in certain grid directions, and
the use of sparse grids. Four- and five-asset options are computed with
the techniques, that perform best in the three-asset reference computations.
The option parameters used in the experiments are K = 100, T = 1, r =
0.04, ρij = 0.5, δi = 0 and all assets are equally weighted, hence wi = d−1.
The volatilities for the different options can be found in Table 3.5.

Table 3.5: Volatilities for the call option pricing experiment.

d σ1 σ2 σ3 σ4 σ1

3 0.3 0.35 0.4
4 0.3 0.35 0.4 0.45
5 0.3 0.35 0.4 0.45 0.25

The spot price is chosen to be S1 = S2 = S3 = K (so
∑3

k=1wkSk =∑3
k=1

Sk
3 = K). The reference value V (spot)=13.245 is computed by use

of an accurate FFT-based pricing technique (see Chapter 4) . In Table 3.6,
option prices obtained on a 3D equidistant full grid are presented for the
original formulation of the pricing PDE (1.9) as well as for the two types
of transformations (linear and nonlinear). The total number of unknowns is
23nf . In the experiments with equidistant grids we choose the same number
of points for every coordinate.

The errors in Table 3.6 are computed as the absolute error between the
computed value and V (spot). We see in Table 3.6 that the use of only

76



3.6. Option pricing experiments

Table 3.6: Three-asset option with the three formulations on an equidistant
full grid of (2nf × 2nf × 2nf ).

Eq (1.9) Eq (3.45) and (3.51) Eq (3.45) and (3.52)

nf Price Error Price Error Price Error

3 12.862 3.8 · 10−1 13.937 6.9 · 10−1 13.904 6.6 · 10−1

4 13.150 9.5 · 10−2 13.196 4.9 · 10−2 13.173 7.2 · 10−2

5 13.221 2.4 · 10−2 13.236 9.4 · 10−3 13.232 1.3 · 10−2

6 13.239 5.9 · 10−3 13.242 3.3 · 10−3 13.241 4.1 · 10−3

7 13.243 1.5 · 10−3 13.244 7.7 · 10−4 13.244 9.6 · 10−4

a grid transformation does improve accuracy significantly on a full grid, as
expected. Furthermore, the accuracy improves by a factor 4 with decreasing
mesh sizes, which is also expected.

Table 3.7: Three-asset option on a non-equidistant full grid of size (c12
nf ×

c22
nf × c32nf ), c1 = 16, c2 = c3 = 4.

Eq (1.9) Eq (3.45) and (3.51) Eq (3.45) and (3.52)

nf Price Error Price Error Price Error

1 13.098 1.5 · 10−1 13.241 4.3 · 10−3 13.232 1.3 · 10−2

2 13.207 3.8 · 10−2 13.243 2.2 · 10−3 13.241 4.0 · 10−3

3 13.236 9.4 · 10−3 13.244 5.1 · 10−4 13.244 9.5 · 10−4

4 13.243 2.3 · 10−3 13.245 1.4 · 10−4 13.245 2.4 · 10−4

In Table 3.7, we can observe an interesting improvement in accuracy with
the two coordinate transformations when non-equidistant grids are used with
c1 = 16 and ci = 4, i = 2, 3. Four times fewer points have been used in these
tests. Whereas the accuracy without transformation is worse compared to
the results in Table 3.6, the effect of coordinate transformation is positive
in this respect. The size of the grid at number nf = 3 is 128 × 32 × 32.
This solution is comparable to the solution on the 128×128×128 grid from
Table 3.6.

Results obtained with the sparse grid combination technique (from sec-
tion 3.3.4) corresponding to those in Tables 3.6 and 3.7, are presented in
Table 3.8, for the equidistant case, and in Table 3.9, for the non-equidistant
finest grids.

We observe the negative effect of the payoff function not being aligned
with a grid line on the sparse grid accuracy in the second and third columns
of Table 3.8, where the results with the original non-transformed grid are
presented. The need to align the payoff function with a grid line can clearly
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Table 3.8: Three-asset option with the three formulations on a regular sparse
grid, representing a (c12

ns × c22ns × c32ns)-grid c1 = c2 = c3 = 4.

Eq (1.9) Eq (3.45) and (3.51) Eq (3.45) and (3.52)

ns Price Error Price Error Price Error

1 12.868 3.8 · 10−1 13.937 6.9 · 10−1 13.904 6.6 · 10−1

2 13.440 1.9 · 10−1 13.198 4.7 · 10−2 13.173 7.2 · 10−2

3 13.150 9.5 · 10−2 13.237 8.1 · 10−3 13.232 1.3 · 10−2

4 13.326 8.1 · 10−2 13.242 2.7 · 10−3 13.241 4.0 · 10−3

5 13.230 1.5 · 10−2 13.244 6.3 · 10−4 13.244 9.5 · 10−4

6 13.233 1.2 · 10−2 13.245 1.7 · 10−4 13.245 2.4 · 10−4

be observed as the methods based on transformed coordinates show a very
satisfactory accuracy.

We further notice that there is no significant difference between the lin-
ear and nonlinear coordinate transformations. In Table 3.9, grid stretching
(2.25) is also included. A slightly better result is observed by using the
stretching. It shows, however, that the reduction of grid points in the other
(not the first) directions, by the choice for non-equidistant grids, is much
more significant than the additional stretching of the first coordinate. The
accuracy is dictated by the fewer grid points in the directions 2 and 3. More-
over, a fixed analytic grid stretching may not place the clustered points at
the desired position for accuracy in the Greeks. The Greeks need not have
their largest gradients near the exercise price. The errors in the hedge pa-
rameters in the sparse grid computation technique presented in Table 3.10
are computed as the difference between the values of two preceding layers,
i.e: |∆ns+1−∆ns | where ∆ns corresponds to a hedge parameter on layer ns.
The difference in accuracy between a linear and a non-linear transformation
is negligible. The grid stretching slightly decreases the Greek’s accuracies.
We conclude that the use of grid stretching does not really pay off in these
model examples.

An interesting notion is about the number of sub-grids Z that we need to
evaluate with the sparse grid computation technique. Because of the choice
of the ci (c1 = 16, c2 = c3 = 4), the number ns can be chosen differently
in the Tables 3.8 and 3.9 and therefore the number of grids employed is
different. The number of grids for the equidistant case using equation (3.25)
is 46, whereas for the non-equidistant case it is only 19. This is because in
the latter case, the sparse grid evaluation is based on a 32×8×8-grid rather
than on an 8× 8× 8-grid. The finest sub-grids in both cases have 214 points
per sub-grid and therefore the non-equidistant case has a lower complexity
than the equidistant case, since fewer solutions have to be computed.
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Table 3.9: Three-asset option with the two coordinate transformation meth-
ods on a non-equidistant sparse grid, representing a (c12

ns × c22ns × c32ns)-
grid, c1 = 16, c2 = c3 = 4.

Without stretching

Eq (3.45) and (3.51) Eq (3.45) and (3.52)

ns Price Error Price Error

1 13.241 4.3 · 10−3 13.232 1.3 · 10−2

2 13.243 2.3 · 10−3 13.241 4.0 · 10−3

3 13.244 5.0 · 10−4 13.244 9.4 · 10−4

4 13.245 1.4 · 10−4 13.245 2.4 · 10−4

With stretching

Eq (3.45) and (3.51) Eq (3.45) and (3.52)

ns Price Error Price Error

1 13.265 2.0 · 10−2 13.259 1.4 · 10−2

2 13.249 3.6 · 10−3 13.247 2.5 · 10−3

3 13.246 7.2 · 10−4 13.245 4.5 · 10−4

4 13.245 3.7 · 10−5 13.245 9.6 · 10−5

Table 3.10: Greeks of the three-asset option on a non-equidistant sparse grid
of size (c12

ns × c22ns × c32ns) with c1 = 16, c2 = c3 = 4

Non-linear transformation
ns ∆1 (3.55) Error Γ1,1 (3.56) Error Γ1,2 (3.56) Error
3 0.196 1.6 · 10−3 1.53 · 10−3

4 0.197 8.3 · 10−4 1.588 · 10−3 8.3 · 10−4 1.460 · 10−3 2.4 · 10−6

5 0.197 1.7 · 10−4 1.588 · 10−3 6.6 · 10−4 1.460 · 10−3 5.9 · 10−7

6 0.197 4.5 · 10−5 1.588 · 10−3 1.3 · 10−4 1.460 · 10−3 1.3 · 10−7

ns Non-linear transformation and stretching
1 0.198 1.582 · 10−3 1.454 · 10−3

2 0.197 7.8 · 10−4 1.586 · 10−3 7.9 · 10−4 1.458 · 10−3 3.8 · 10−6

3 0.197 2.00 · 10−4 1.587 · 10−3 5.9 · 10−4 1.459 · 10−3 8.1 · 10−7

4 0.197 4.9 · 10−5 1.587 · 10−3 1.5 · 10−4 1.450 · 10−3 2.0 · 10−7
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Table 3.11: Four-asset option price, ∆1 and Γ1,1. The sparse grid solution
mimics a (c12

ns × c22ns × c32ns × c42ns)-grid, c1 = 16, c2 = c3 = c4 = 4.

4D linear, no stretching
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 13.672 0.1450 8.697 · 10−4

2 13.662 1.0 · 10−2 0.146 5.4 · 10−4 8.715 · 10−4 1.8 · 10−6

3 13.661 2.1 · 10−3 0.146 1.3 · 10−4 8.731 · 10−4 1.6 · 10−6

4 13.659 6.6 · 10−4 0.146 4.4 · 10−5 8.735 · 10−4 4.0 · 10−7

4D linear and stretching
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 13.686 0.146 8.694 · 10−4

2 13.664 2.1 · 10−2 0.146 5.0 · 10−4 8.718 · 10−4 2.342 · 10−6

3 13.660 4.4 · 10−3 0.146 1.3 · 10−4 8.729 · 10−4 1.124 · 10−6

4 13.659 1.1 · 10−3 0.146 3.3 · 10−5 8.731 · 10−4 2.484 · 10−7

4D non-linear
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 13.647 0.145 8.734 · 10−4

2 13.656 8.1 · 10−3 0.146 5.6 · 10−4 8.736 · 10−4 1.9 · 10−7

3 13.658 2.9 · 10−3 0.146 1.2 · 10−4 8.736 · 10−4 7.3 · 10−9

4 13.659 6.4 · 10−4 0.146 3.1 · 10−5 8.737 · 10−4 1.7 · 10−8

4D non-linear and stretching
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 13.671 0.147 8.701 · 10−4

2 13.661 1.0 · 10−2 0.146 5.8 · 10−4 8.726 · 10−4 2.4 · 10−6

3 13.659 1.7 · 10−3 0.146 1.4 · 10−4 8.731 · 10−4 5.5 · 10−7

4 13.658 4.4 · 10−4 0.146 3.6 · 10−5 8.732 · 10−4 1.4 · 10−7

For the four- and five-asset option examples discussed next, we evaluate
the coordinate transformation with and without grid stretching. The non-
equidistant grids are also employed. For the five-asset basket call we focus
only on the non-linear transformation. In the Tables 3.11 and 3.12, the
results of these two option contracts are presented. The errors are computed
as the difference between the option values in the point Si = K ∀i in two
preceding layers. We observe that the non-equidistant grid also leads to
very satisfactory accuracy here. The determination of the hedge parameters
also works fine in higher dimensions. Grid stretching again does not seem
to be necessary for obtaining small truncation errors. Note that the reason
for a slight decrease in the grid convergence of the 4D and 5D sparse grid
solutions is due to the term (log(h−1

l ))d−1 in equation (3.23).

3.6.2 Digital option

The techniques presented can also be used for pricing options with discon-
tinuous contract functions. An example is the digital basket option. The
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Table 3.12: Five-asset option price, ∆1 and Γ1,1. The sparse grid solution
mimics a full grid of (c12

ns × c22ns × c32ns × c42
ns × c52ns) points, c1 =

16, c2 = c3 = c4 = c5 = 4.

Non-linear transformation, no grid stretching
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 12.670 0.118 6.057 · 10−4

2 12.679 9.113 · 10−3 0.118 5.4 · 10−4 6.056 · 10−4 1.2 · 10−7

3 12.682 3.276 · 10−3 0.118 1.1 · 10−4 6.055 · 10−4 7.3 · 10−8

4 12.683 7.495 · 10−4 0.118 2.9 · 10−5 6.055 · 10−4 8.3 · 10−9

Non-linear transformation and stretching
ns Price Error ∆1 (3.55) Error Γ1,1 (3.56) Error
1 12.700 0.119 6.033 · 10−4

2 12.687 1.3 · 10−2 0.118 5.0 · 10−4 6.049 · 10−4 1.7 · 10−6

3 12.684 2.4 · 10−3 0.118 1.2 · 10−4 6.053 · 10−4 3.3 · 10−7

4 12.683 6.3 · 10−4 0.118 3.1 · 10−5 6.054 · 10−4 8.4 · 10−8

contract function of a digital basket call reads:

V (T,S) =

{
1 if

∑d
i=1 wiSi > K

0 elsewhere.
(3.57)

The discontinuity is not aligned with a grid line, unless coordinate transfor-
mation from Section 3.5 is used. Here, other option parameters are chosen,
in particular, a shorter time to maturity (leading to solutions with steep
gradients):

K = 100 r = 0.05% T = 0.25 δ =
(
0.02 0.03 0.06 0.04 0.07

)

wi = 1/d σ =
(
0.30 0.35 0.40 0.33 0.27

)

ρ =




1.00 0.50 0.25 0.17 0.10
0.50 1.00 −0.25 −0.65 −0.30
0.25 −0.25 1.00 0.50 0.45
0.17 −0.65 0.50 1.00 0.07
0.10 −0.30 0.45 0.07 1.00




In Table 3.13, the results for a digital basket call are presented. Again,
the errors are computed as the difference between the option values in the
point Si = K ∀i in two preceding layers. As expected, we now observe a
lower convergence of O(h) due to the discontinuity, but the accuracy is still
satisfactory. The grid stretching gives the same error convergence, but a
more accurate result. It is a helpful technique in the case of solutions with
steep gradients.
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Table 3.13: Digital basket call option with 3,4 and 5 underlying assets. The
sparse grid solution mimics a full grid of 16 · 2ns points in the first direction
and 4 · 2ns in the other directions.

Non-linear transformation, no stretching

3D 4D 5D

ns Price Error Price Error Price Error

1 0.543 0.559 0.568
2 0.455 8.8 · 10−2 0.451 1.1 · 10−1 0.441 1.3 · 10−1

3 0.496 4.1 · 10−2 0.500 4.9 · 10−2 0.497 5.6 · 10−2

4 0.476 2.0 · 10−2 0.476 2.4 · 10−2 0.470 2.7 · 10−2

Non-linear transformation, stretching

ns Price Error Price Error Price Error

1 0.483 0.486 0.481
2 0.470 1.3 · 10−2 0.470 1.6 · 10−2 0.463 1.8 · 10−2

3 0.477 6.7 · 10−3 0.478 7.9 · 10−3 0.472 8.9 · 10−3

4 0.480 3.4 · 10−3 0.482 4.0 · 10−3 0.476 4.5 · 10−3

3.6.3 Bermudan option

We conclude the experiments with a Bermudan put option. The option
parameters are again chosen differently:

K = 50 r = 5% T = 0.25

σ =
(
0.41 0.38 0.39 0.37 0.42

)

ρ =




1.00 0.95 0.90 0.86 0.81
0.95 1.00 0.95 0.90 0.86
0.90 0.95 1.00 0.95 0.90
0.86 0.90 0.95 1.00 0.95
0.81 0.86 0.90 0.95 1.00




δ =
(
0.02 0.03 0.06 0.04 0.07

)

w3D =
(
0.45 0.30 0.25

)

w4D =
(
0.4 0.2 0.1 0.3

)

w5D =
(
0.32 0.28 0.18 0.10 0.12

)

A Bermudan put gives the holder the right to exercise at discrete moments
prior to the maturity date (See Section 1.6). In this experiment 10 exercise
dates are allowed, that are equally spaced along the duration of the option
contract. At each exercise date, the option value is the maximum of the
computed value at the current date tm and the payoff function:
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Table 3.14: 10-times exercisable Bermudan basket put option with 3, 4 and
5 underlying assets. The sparse grid solution mimics a full grid of 16 · 2ns

points in the first direction and 4 · 2ns in the other directions.

Non-linear transformation, no stretching

3D 4D 5D

ns Price Error Price Error Price Error

3 10.365 10.042 10.344
4 10.370 4.7 · 10−3 10.046 4.1 · 10−3 10.349 4.9 · 10−3

5 10.370 5.2 · 10−4 10.048 1.2 · 10−3 10.349 4.7 · 10−4

6 10.370 1.8 · 10−4 10.048 2.0 · 10−5 10.350 4.2 · 10−4

V (tm,S) = max{V (T,S(T )), V (tm,S(tm))}. In Table 3.14, we present the
results of the computation with up to 5 underlying assets. We observe a
satisfactory accuracy for all option contracts, although the convergence is
irregular. This may be due to the choice of correlation coefficients and, in
particular due to the early exercise feature. The non-linear transformation
works well for this case.

Although the results of these experiments are positive for the use of
sparse grids for basket options, it also gives rise to some serious thoughts on
the applicability of the sparse grid method. Satisfactory sparse grid accuracy
can be achieved for options whose payoff function coincides with a grid line
after a coordinate transformation. This may, however, not be easily possible
for complex payoff functions, as they are usually encountered in the financial
industry.

3.7 Conclusions

For pricing basket options with the multi-dimensional Black-Scholes equa-
tion and the sparse grid combination technique, a linear or a non-linear coor-
dinate transformation can be employed in order to align the payoff function
with a grid line. An additional stretching function concentrates points in
the region around the exercise price. With the coordinate transformations it
is possible to reduce the number of grid points in some coordinates, which is
highly advantageous from a computational point of view. The effect of grid
stretching is mainly significant on these non-equidistant grids if the matu-
rity time is short for digital options (as then steep gradients in the solution
occur). With the coordinate transformation the sparse grid combination
technique can be efficiently employed to achieve very satisfactory grid accu-
racy in space. A significant reduction in the number of sub-grids that need to
be processed can be achieved by a clever definition of the base grid. For the
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model problems evaluated, the difference in the accuracy between the linear
or the nonlinear coordinate transformations is not significant. This includes
the evaluation of the hedge parameters. Both the linear and the nonlinear
transformation perform very well. The nonlinear transformation gives rise
to a basket option problem with easier boundary conditions. A critical ob-
servation is about the generality of the sparse grid method in multi-asset
option pricing. For highly complicated payoff functions that typically can-
not be transformed to a low-dimensional hyper-plane the efficient use of
sparse grids is not so evident. The transformation also works for options
with discontinuous payoff functions and options with early exercise.
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Chapter 4

Option pricing using a

parallel FFT method

4.1 Introduction

In this chapter, we present a pricing technique based on the risk-neutral
integral equation (1.8) presented in Section 1.3.2. This type of integrals can
be solved numerically by the use of the fast Fourier transform (FFT). The
FFT is a very efficient algorithm for the discrete Fourier transform following
from the discretisation of the integral in equation (1.8). Again, the curse of
dimensionality plays an important role in the solution, since large vectors
have to be stored in the memory of a computer. However, a major advantage
of the FFT is the availability of nice division techniques. When the FFT
is divided in parts, the method can be applied to larger problems than the
PDE method in Chapter 3. The outline of this chapter is as follows. We
start with a short introduction of transform-based option pricing methods
and present the CONV method [33] in detail. Section 4.3 gives some insight
in the fast Fourier transform as well as in its parallelisation. Furthermore,
the parallelisation of the CONV method and of the sparse grid technique
is discussed. We conclude the chapter with the numerical experiments in
Section 4.4 and we draw the conclusions of the FFT-based option pricing
method in Section 4.5.

4.2 The multi-dimensional CONV method

4.2.1 Background

The CONV method to be presented falls in the category of transform-based
methods (see for example [1, 43]). In particular, the method in [16] employs
the FFT to price options on more than one asset. These methods originate
from the risk-neutral valuation formula (1.8), which for single-asset problems
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reads:
V (t, S(t)) = e−r(T−t)

E
Q [V (T, S(T ))] , (4.1)

where again V denotes the value of the option, r is the risk-free interest
rate, t is the current time, T is the maturity date and S represents the
price of the underlying asset. The interest rate, r, is again assumed to be
deterministic here. Equation (4.1) is an expectation and can be evaluated
using numerical integration provided that the probability density function
is known. Equation (4.1) can be written as,

V (t, x(t)) = e−r(T−t)

∫ ∞

K∗

(
ex(T ) − eK∗

)
f(x)dx, (4.2)

with K∗ = lnK, x(t) = lnS(t) and f(x) the probability density function.
The value of V (t, x(t)) tends to S(0) as K∗ tends to −∞ and hence the
call price is not square integrable. Therefore, the contract function should
be damped in any way. Commonly, it is multiplied by damping factor
exp (αK∗), with α > 0. The computation of the Fourier transform of the
option value, ψ, can be done by using the characteristic function, ϕ(ω), as
proposed by Carr and Madan [12]:

ψ(ω) = e−r(T−t)

∫ ∞

−∞
eiωK∗

∫ ∞

K∗
eαK∗

(
ex − eK∗

)
f(x)dxdK∗

=
e−r(T−t)ϕ(ω − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
,

(4.3)

where the characteristic function of the underlying is defined by

ϕ(u) = E

[
eiu lnS(T )

]
. (4.4)

For a European call an exact solution exists provided ϕ is known. To com-
pute the call price, the inverse Fourier transform [21] has to be computed:

V (t, x(t)) =
e−αK∗

2π

∫ ∞

−∞
e−iωK∗

ψ(ω)dω. (4.5)

Following the same steps for basket options, however, would require the
characteristic function of a basket value, which is not known in general.

For common baskets quite accurate approximations can be obtained by
assuming that the basket itself is an asset following the same distribution
as one of the underlying assets [19, 54]. Here, we evaluate a method which
does not rely on such an approximation.

4.2.2 The CONV-method

Like all transform-based methods, the CONV method [33] is also based on
the risk-neutral valuation formula (1.8). In the multi-dimensional version
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we need to compute:

V (t,x(t)) = e−r(T−t)

∫

Rd

Φ(T,y)f(y|x)dy, (4.6)

where x = lnS(t) is a vector of the log of the asset prices, y = lnS(T ) and
f(y|x) is the probability density function of the transition of x at time t to
y at time T .

With the right to exercise at certain times, tn, before the maturity date,
T , the Bermudan option price is defined by:

V (tn,x(tn)) = max

{
Φ(tn,x(tn)) , e−r(tn+1−tn)

∫

Rd

V (tn+1,y)f(y|x)dy

}
,

(4.7)
with Φ(tn,x(tn)) the contract function at tn.

Remark 4.2.1. (Smooth Fit Principle) It is well-known that in the case of
American options under Black-Scholes dynamics the derivative of the value
function is continuous (smooth fit principle). This is however not the case
anymore when pricing Bermudan options, for which the function V will
have a discontinuous first derivative. Though at the final exercise time
the location of this discontinuity is known, this is not the case at previous
exercise times. This may hamper the numerical treatment of options in the
present context.

At each exercise date, tn, valuation of (4.7) can be interpreted as a
European-style contract with maturity time tn+1 and “initial” time tn. For
the derivation of the multi-asset CONV method, we can therefore focus
on (4.6) and keep the notation as in (4.6).

The main premise of the CONV method is that the transition density
function f(y|x) equals the density of the difference of y and x:

f(y|x) = f(y − x). (4.8)

This holds for several models, such as geometric Brownian motion and, more
generally, Lévy processes, which have independent increments. Then with
z = y − x, we have:

V (t,x) = e−r(T−t)

∫

Rd

Φ(T,x + z)f(z)dz, (4.9)

which is a cross-correlation between Φ and f . The cross-correlation operator
can be treated as a convolution operator [24] and therefore the method is
called the CONV method in [33].

The valuation of equation (4.9) can be done numerically for known prob-
ability density functions. For several asset price models, including the Lévy
processes, however, only the characteristic function is known. When trans-
forming the cross-correlation operator to the Fourier space, we have to deal
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with a product of the Fourier transform of the contract function and the
Fourier transform of the probability density function, which is the charac-
teristic function.

The Fourier transform of a function is only available if the function
is L1−integrable. This is typically not the case for multi-asset contract
functions as damping techniques [12] and [33] are not available for multi-
asset options in general. As an example we try to integrate a contract
function of a two-dimensional basket call, which is damped by eα1x1+α2x2 ,

∫

R2

eα1x1+α2x2K (c1e
x1 + c2e

x2 − 1)+ dx1dx2

=K

∫ − ln c2

−∞

∫ ∞

ln(1−c2ex2)−ln c1

eα1x1+α2x2 (c1e
x1 + c2e

x2 − 1) dx1dx2

+K

∫ ∞

− ln c2

∫ ∞

−∞
eα1x1+α2x2 (c1e

x1 + c2e
x2 − 1) dx1dx2.

(4.10)

The second term in (4.10) is unbounded because of the integration over R

for x1. It is not possible to find a proper value for α1 in order to bound this
integral.

Instead of performing the FT analytically, in the multi-dimensional CONV
method the computation is done numerically and therefore the domain of
integration has to be truncated. Since the density in (4.9) decays to zero
rapidly as z → ±∞, we truncate the infinite integration range without
loosing significant accuracy to [ai, bi] ⊂ R

d, i = 1, . . . , d. The direct con-
struction of the discretised multi-dimensional CONV formula, below, via a
Fourier series expansion of the continuation value replaces L1-integrability
on (−∞,∞) with L1-summability on a truncated computational domain,
so that the restriction on α is removed. Experiments in [33] showed that
one can choose α = 0 in the CONV method for many contracts, and ob-
tain accurate option values. The discrete version will however resemble its
continuous counterpart more and more as the domain size increases.

So, our point of departure will be a truncated domain, Ωd. The size of
Ωd is chosen such that the error made due to truncation is negligible com-
pared to the discretisation error. To show the accuracy of the truncation,
we refer Table 4.1. In this table a numerical experiment with a basic Eu-
ropean call option is included, illustrating the effect of the truncation. It is
shown numerically that a domain of size Ωi = [−Li,+Li] with Li = 20σi

gives highly accurate results, with σi denoting the standard deviation of the
density. This domain size is set in all experiments to follow.

We now take the Fourier transform of equation (4.9):

er(T−t)F{V (t,x)}(ω) =

∫

Ωd

eiωx

[∫

Ωd

Φ(T,x + z)f(z)dz

]
dx

=

∫

Ωd

∫

Ωd

eiω(x+z)Φ(T,x + z)f(z)e−iωzdzdx.

(4.11)
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Table 4.1: At the money error caused by truncation to Ωd with 220 discreti-
sation points (see section 4.2.4) for a European call. K = 40, r = 0.06, δ =
0.04, σ = 0.25, T = 1

L Kexmin Kexmax Error

σ 31.15 51.36 2.45 × 100

2σ 24.26 65.95 1.42 × 100

4σ 14.72 108.73 1.92 × 10−1

8σ 5.41 295.56 2.40 × 10−4

12σ 1.99 803.42 7.54 × 10−9

16σ 0.73 2183.91 6.86× 10−10

20σ 0.27 5936.47 2.07× 10−10

Here the multi-dimensional Fourier transform, and its inverse, are defined
as:

F{h(x)}(ω) =

∫

Ωd

eiωxh(x)dx,

F inv{H(ω)}(x) =
1

(2π)d

∫

Ωd

e−iωxH(ω)dω,

with, for example,
∫

Ωd

eiωxh(x)dx =

∫ Ld

−Ld

. . .

∫ L1

−L1

eiω1x1 . . . eiωdxdh(x1, . . . , xd)dx1 . . . dxd.

Changing the order of integration in (4.11) and using y = x + z, we find:

er(T−t)F{V (t,x)}(ω) =

∫

Ωd

∫

Ωd

eiωyΦ(T,y)f(z)e−iωzdydz

=

∫

Ωd

eiωyΦ(T,y)dy

∫

Ωd

e−iωzf(z)dz

= F{Φ(T,y)}(ω)ϕ(−ω),

(4.12)

with ϕ the characteristic function. After taking the inverse Fourier trans-
form, the option price is found to be:

V (t,x) = e−r(T−t)F inv {F{Φ(T,y)}ϕ(−ω)} . (4.13)

Aliasing, a commonly observed feature when dealing with a convolution of
sampled signals by means of the FFT, is not a problem in our application,
as we encounter a convolution of a characteristic function and the DFT of
a vector with option values. The DFT is periodical but this would make
the convolution circular only if the characteristic function would also be
obtained by a DFT. However, we work with the analytical characteristic
function, which is not periodic.
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Chapter 4. Option pricing using a parallel FFT method

4.2.3 Characteristic function and hedge parameters

In the multi-asset case considered here, the asset prices are modelled as cor-
related log-normal distributions. The characteristic function can be found
via the probability density function,

f(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
,

where µj =
(
r − δj − 1

2σ
2
j

)
(T − t), Σ is the correlation matrix with

[σ]jk = ρjkσjσk(T − t) and |Σ| its determinant. Dividend-yields δj , volatil-
ities σj and the correlation coefficients ρjk are assumed to be known. The
characteristic function reads, by using equation (4.4),

ϕ(ω) = exp


i

d∑

k=1

µkωk −
1

2
(T − t)

d∑

j=1

d∑

k=1

ρjkσjσkωjωk


 . (4.14)

The hedge parameters can easily be obtained using the CONV method.
The hedge parameters can be computed in an analytic way by the use of
the derivative properties of the Fourier transform [24]:

F
(
df

dx

)
= −iωF (f) .

Now the hedge parameters are:

∆j(t,x) =
∂V

∂Sj
= −e

−r(T−t)

Sj
F inv {iωjF{Φ(T,y)}ϕ(−ω)} , (4.15)

Γj(t,x) =
∂2V

∂S2
j

=
e−r(T−t)

S2
j

F inv
{(
iωj + ω2

j

)
F{Φ(T,y)}ϕ(−ω)

}
. (4.16)

4.2.4 Discretisation of the CONV-method

Equation (4.13) can now be solved numerically with the help of multi-
dimensional quadrature rules. A computation using the DFT requires equidis-
tant grids for x, y and ω. The number of grid points per coordinate is again
chosen to be Nj. The domains are chosen to be symmetric around the origin
and hence Ωd = [−L1, L1]× [−L2, L2]× . . .× [−Ld, Ld]. The values of Lj are
dependent on σj according to [33]. We use a fixed region of Lj = 20σj . Now

the meshwidth for coordinate j is defined as dxj = dyj =
2Lj

Nj
and therefore

we have:

xj(kj) = −L+ kjdxj = (kj −
1

2
Nj)dxj 0 6 kj 6 Nj − 1 (4.17)

yj(kj) = −L+ kjdyj = (kj −
1

2
Nj)dyj 0 6 kj 6 Nj − 1. (4.18)
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4.2. The multi-dimensional CONV method

To avoid aliasing, the Nyquist relation between the grid size in the frequency
domain ω and log-asset x must be obeyed:

dxj · dωj =
2π

Nj
. (4.19)

and for the discrete frequency domain, we have:

ωj(nj) = (nj −
1

2
Nj)dωj 0 6 nj 6 Nj − 1. (4.20)

Remark 4.2.2. We will use kj and mj for the index numbers in the log-asset
domain and nj for the index numbering in the frequency domain according
to the standard literature [24].

The functions defined on the discretised log-asset prices are abbreviated:

Φ(T, y1(k1), . . . , yd(kd)) = Φk

V (t, x1(k1), . . . , xd(kd)) = V (t,xk).

with k = (k1, k2, . . . , kd). Similar for the functions in the frequency domain:

ϕ(−ω1(n1),−ω2(n2), . . . ,−ωd(nd)) = ϕn,

with n = (n1, n2, . . . , nd). The Fourier transform F{Φ(T,y)}n of Φ is ab-
breviated as Φ̂n. Finally we use the abbreviation

N1−1∑

k1=0

. . .

Nd−1∑

kd=0

=

N−1∑

k=0

when approximating the Fourier integrals to summations. The approxima-
tion of the inner integral of (4.13) by the trapezoidal rule gives:

Φ̂n :=

∫

Rd

Φ(T,y)eiωydy ≈ dY
N−1∑

k=0

ZkΦk exp(iωn1yk1 + . . .+ iωnd
ykd

),

(4.21)
with dY =

∏d
j=1 dyj, Zk =

∏d
j=1Rj(kj) and the trapezoidal weights,

Rj(kj) =

{
1
2 kj = 0 ∨ kj = Nj − 1

1 otherwise.

Using the Nyquist relation (4.19), the terms exp(iωnjykj
), j = 1 . . . d, can be

rewritten as,

exp(iωnjykj
) = exp(i(nj −

1

2
Nj)dωj(kj −

1

2
Nj)dxj)

= exp(
2πinjkj

Nj
) exp(−πi(kj + nj)) exp(

πiNj

2
)
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Introducing the twiddle factors1, WNj = exp(−2πi
Nj

) as one of Nj complex

N−th roots of unity, we have:

exp(
2πinjkj

Nj
) exp(−πi(kj + nj)) exp(

πiNj

2
) = (−1)kj (−1)nj+

Nj
2 W

−njkj

Nj
.

Equation (4.21) can be written as:

Φ̂n ≈ dY
N−1∑

k=0

GkΦk

d∏

j=1

(−1)nj+
Nj
2 W

−njkj

Nj
, (4.22)

with Gk = Zk

∏d
j=1(−1)kj .

Recognising that

Dd {f}n =

N−1∑

k=0

fk

d∏

j=1

e
2πinj kj

Nj =

N−1∑

k=0

fkW
−nk
N (4.23)

Dinv
d {F}k =

1
∏d

j=1Nj

N−1∑

n=0

FnW
nk
N (4.24)

are the discrete Fourier transform (DFT) and inverse Fourier transform,
respectively, we have:

Φ̂n ≈ dY
d∏

j=1

(
(−1)nj+

Nj
2

)
· Dd [GkΦk]n , (4.25)

where Dd is the d−dimensional (or d-times repeated) DFT.
The outer integral of equation (4.13) is treated by the left-hand rectangle

rule in accordance with the error analysis [33]. So, we have,

V (t,xm) = e−r(T−t)F inv
(
Φ̂n · ϕn

)
≈ e−r(T−t)

(2π)d

∫

Rd

Φ̂nϕne
−iωxdω

= dΩ
e−r(T−t)

(2π)d

N−1∑

n=0

Φ̂nϕne
−iωn1xm1−...−iωnd

xmd .

(4.26)

By using (4.19):

dΩ =

d∏

j=1

dωj =

d∏

j=1

2π

Njdyj
=

(2π)d

NddY
. (4.27)

Again we can replace,

1The twiddle factors in finance are the complex conjugate of the twiddle factors in
most standard literature. There is no difference in the computations
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4.3. The fast Fourier transform

e−iωnj xmj = (−1)mj (−1)nj+
Nj
2 W

njmj

Nj
. (4.28)

Combining (4.26), (4.27) and (4.28) gives:

V (t,xm) ≈ e−r(T−t)

NddY

N−1∑

n=0

Φ̂n · ϕn.

d∏

j=1

(−1)mj (−1)nj+
Nj
2 W

njmj

Nj
. (4.29)

We see that the products (−1)nj+
1
2
Nj vanish when combining (4.29) and

(4.22). The combination of the two discretised integrals leads to the multi-
dimensional CONV method:

V (t,xm) =
e−r(T−t)

(2π)d
(−1)mDinv

d [ϕnDd {ΦkGk}n]
m
. (4.30)

with (−1)m = (−1)m1(−1)m2 . . . (−1)md .

4.3 The fast Fourier transform

4.3.1 Divide-and-conquer

The computation of the discrete Fourier transform in equation (4.30) can be
performed by means of the fast Fourier transform (FFT). Before we discuss
the general technique of the FFT, we discuss the complexity of the DFT
itself. The discussion in this section is done for the one-dimensional case,
but it can be generalised to the multi-dimensional case as well.

Let us recall the one-dimensional DFT of a vector with N = 2s compo-
nents from equation (4.23):

D{f}n =
N−1∑

k=0

fke
2πink

N =
N−1∑

k=0

fkW
−nk
N (4.31)

where WN = e−
2πi
N were introduced in Section 4.2.4. These factors are

called complex roots of unity or twiddle factors. These twiddle factors play
an important role in Fourier analysis since the following properties hold:

|W | =
√
WNWN = 1 (4.32)

W±n
N = 1. (4.33)

Property (4.33) refers to the terminology of complex roots of unity. Since
there are n different roots of unity 0 6 n 6 N − 1, in the literature, these
roots are often called as N complex N−th roots of unity. In our analysis
we follow the books of [38, 50].
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Chapter 4. Option pricing using a parallel FFT method

Proposition 4.3.1. The computation of the discrete Fourier transform
(4.31) can be interpreted as the evaluation of the polynomial

v(x) =

N−1∑

k=0

fkx
k (4.34)

in the points x = W−n
N . The evaluation of this polynomial in N distinct

points has a computational complexity of N2 elementary computations.

Proof. By substituting:

v(x) = v(W−n
N ) =

N−1∑

k=o

fk(W
−n
N )k = D(f) = Fn.

For every n, there are N multiplications needed with the coefficients of the
polynomial and the twiddle factors. Hence to evaluate N distinct values of
v, this is a total complexity of N2 elementary multiplications.

We see that a straightforward application of the DFT requires N2 el-
ementary computations. We will derive that the FFT algorithm requires
N log2N computations if N = 2s.

We evaluate the polynomial v in a different way. We split the coefficients
fk into two parts. An array with the even coefficients, f2k and an array with
the odd coefficients f2k+1. Then we have:

v(x) =
N−1∑

k=0

fkx
k =

N/2−1∑

k=0

f2kx
2k +

N/2−1∑

k=0

f2k+1x
2k+1

=

N/2−1∑

k=0

f2kx
2k + x

N/2−1∑

k=0

f2k+1x
2k

= v0(x2) + xv1(x2).

The computation of v0(x2) and v1(x2) are evaluations of polynomials with
N/2 coefficients. For every distinct n, there are N + 1 elementary multi-
plications and one extra for the multiplication of x and v1(x2). If this is
done for N distinct points the computational complexity should be N2 +N .
However, we can make use of the nice properties of the twiddle factors.

Lemma 4.3.2 (Cancellation). For any integers N, k > 0 and q > 0:

W−qk
qN = W−k

N

Proof.

W−qk
qN =

(
e
− 2πi

qN

)−qk
= e

2πiqk
qN =

(
e−

2πi
N

)−k
= W−k

N

94



4.3. The fast Fourier transform

Theorem 4.3.3 (Halving theorem). If N is an even positive number, then
the squares of the twiddle factors, WN , based on N , are identical to the
twiddle factors WN/2 based on N/2.

Proof. By the Cancellation Lemma 4.3.2, we have
(
W−k

N

)2
= W−k

N/2. If all

twiddle factors are squared, then:

(
W

−(k+N/2)
N

)2
= W 2k+N

N = W 2k
N WN

N = W 2k
N =

(
W−k

N

)2

since WN
N = 1 by property (4.33).

By the Halving Theorem 4.3.3, the set of twiddle factors
(W 0

N )2, . . . , (W−N+1
N )2 consists of only N/2 distinct twiddle factors. In other

words, to evaluate the polynomial v(x) in the twiddle factors WN we only
need to evaluate the polynomials v0(x) and v1(x) in the N/2 twiddle factors
WN/2. Hence this divide-and-conquer strategy saves us computations.

The combination of the two transforms of the even and odd components
is done by the addition of the two arrays of size N/2. The coefficient of
the transform of the odd components is x and this value describes the whole
range of theN distinct twiddle factors. However, we have for n ∈ [0, N/2−1]:

W
−n−N/2
N = W−n

N W
−N/2
N = W−n

N e
2πiN/2

N = W−n
N eπi = −W−n

N .

Then, for the computation of the DFT we have:

{
Fn = G0

n +W−n
N G1

n

Fn+N/2 = G0
n −W−n

N G1
n

(4.35)

with 0 6 n 6 N/2 − 1 and where

G0
n =

N/2−1∑

k=0

f2kW
−nk
N/2 (4.36)

G1
n =

N/2−1∑

k=0

f2k+1W
−nk
N/2 (4.37)

(4.38)

are the DFTs of size N/2 of the even components (G0) and odd points (G1).
Schematically, the first step of the divide-and-conquer strategy is illustrated
in Figure 4.1.

This strategy can be continued to a next level. The polynomials v0 and
v1 can be divided into two parts. If the coefficients f2k are renamed into g0

k,
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f0 f2 f4 f6 f1 f3 f5 f7

DFT N=4 DFT N=4

G0
0 G0

1 G0
2 G0

3 G1
0 G1

1 G1
2 G1

3

F0 F1 F2 F3 F4 F5 F6 F7

Figure 4.1: One step in the divide-and-conquer strategy for N = 8.

f2k+1 into g1
k and x2 = y, then we have:

v0(x2) =

N/2−1∑

k=0

g0
ky

k =

N/4−1∑

k=0

g0
2ky

2k +

N/4−1∑

k=0

g0
2k+1y

2k+1

=

N/4−1∑

k=0

g0
2ky

2k + y

N/4−1∑

k=0

g0
2k+1y

2k =

N/4−1∑

k=0

f4kx
4k + x2

N/4−1∑

k=0

f4k+2x
4k

= v00(x4) + x2v10(x4).

v1(x2) =

N/2−1∑

k=0

g1
ky

k =

N/4−1∑

k=0

g1
2ky

2k +

N/4−1∑

k=0

g1
2k+1y

2k+1

=

N/4−1∑

k=0

g1
2ky

2k + y

N/4−1∑

k=0

g1
2k+1y

2k =

N/4−1∑

k=0

f4k+1x
4k + x2

N/4−1∑

k=0

f4k+3x
4k

= v01(x4) + x2v11(x4).

The superscripts are ordered from left to right, hence v01 means that the
first splitting is the odd elements and the second splitting takes the even
elements from the new array: f2k+1. Then we have:

v(x) = v0(x2) + xv1(x2)

= v00(x2) + x2v10(x2) + xv01(x2) + x3v11(x2).
(4.39)

Again, by the Halving Theorem 4.3.3, the set of twiddle factors

(W 0
N )2, . . . , (W

−N/2+1
N/2 )2 consists of only N/4 distinct twiddle factors. In

other words, to evaluate the polynomial v0(x) or v1(x) at the twiddle factors
WN/2 we need only to evaluate the polynomials v00(x) and v10(x) or v01(x)
and v11(x) in the N/4 twiddle factors WN/4. Hence again, the divide-and-
conquer strategy cuts down computations.
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4.3. The fast Fourier transform

Similarly to the previous case, the combination of the four transforms of
components is done by the addition of the four arrays of size N/4. Let us
define the DFT of the points 4k + p by Hp:

Hp =

N/4−1∑

k=0

f4k+pW
−4nk
N . (4.40)

According to the derivation of (4.39) and Proposition 4.3.1:, the computation
of G0

n in equation (4.36) is now

G0
n = v0(x2) = v00(W−4n

N ) + x2v10(W−4n
N ) = H0

n +W−2n
N H2

n

for 0 6 n 6 N/4 − 1. For the points in G0
n with N/4 6 n 6 N/2 − 1, we

have:

Hp
n+N/4 =

N/4−1∑

k=0

f4k+pW
−4(n+N/4)k
N =

N/4−1∑

k=0

f4k+pW
−4nk
N = Hp

n

W
−2(n+N/4)
N = W−2n

N W
−N/2
N = −W−2n

N .

Hence: {
G0

n = H0
n +W−2n

N H2
n

G0
n+N/4 = H0

n −W−2n
N H2

n.
(4.41)

Similarly, for the computation of G1
n in equation (4.37), we have

G1
n = v1(x2) = v01(W−4n

N ) + x2v11(W−4n
N ) = H1

n +W−2n
N H3

n

and this is similar to:

{
G1

n = H1
n +W−2n

N H3
n

G1
n+N/4 = H1

n −W−2n
N H3

n.
(4.42)

Finally the computation of Fn is obtained by equation (4.35). The construc-
tion of the DFT of an array with N = 8 by using the divide-and-conquer
strategy two times is presented in Figure 4.2.

LetM(s) be the number of elementary operations necessary to calculate
a 2s−point DFT according to the divide-and-conquer strategy with N = 2s,
then the number of elementary operations to calculate v0(x) and v1(x) costs
in total 2M(N/2) = 2M(s− 1). To calculate the combination in the points

x = W 0
N/2 = 1 and x = W

N/2
N/2 = 1, i.e. the components of the transformed

vector F0 and FN/2 costs two elementary operations. The calculation of the
components Fn and Fn+N/2 with n = 1, 2, . . . , N2−1 costs three elementary
operations for each n, hence 3(N/2− 1) = 3 · 2s− 3. Hence the combination
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f0 f4 f2 f6 f1 f5 f3 f7

DFT N=2 DFT N=2 DFT N=2 DFT N=2

H0
0 H0

1 H2
0 H2

0 H1
0 H1

0 H3
0 H3

0

G0
0 G0

1 G0
2 G0

3 G1
0 G1

1 G1
2 G1

3

F0 F1 F2 F3 F4 F5 F6 F7

Figure 4.2: Two steps in the divide-and-conquer strategy for N = 8.

of v0 and v1 costs in total 3 · 2s−1 − 1. In total the number of elementary
operations is a recurrence expression:

M(s) = 2M(s − 1) + 3 · 2s−1 − 1. (4.43)

The computation of a two-point DFT (i.e. N = 2) is two elementary opera-
tions: F0 = f0 + f1 and F1 = f0 − f1, henceM(1) = 2. Now the recurrence
expression can be solved by induction.

Proposition 4.3.4. The solution of equation (4.43) with M(1) = 2 reads:

M(s) = (3s− 2)2s−1 + 1. (4.44)

Proof. M(1) = 2 is a proper induction step, since M(0) = 0. This follows
both from equation (4.43) and (4.44). Now, we have:

M(s + 1) = (3(s + 1)− 2)2s + 1 = 3s · 2s − 2s + 1

= 6s2s−1 − 4 · 2s−1 + 3 · 2s + 1

= 2
(
3(s− 2)2m−1 + 1

)
+ 3 · 2s−1 − 1

= 2M(s) + 3 · 2s − 1

Replacing s by log2N , we have:

M(N) = O(N log2N), (4.45)
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which is the expected computational complexity of a one-dimensional dis-
crete Fourier transform by the application of the divide-and-conquer strat-
egy. We will now discuss the algorithms which follow from the divide-and-
conquer strategy.

4.3.2 The Cooley-Tukey algorithm

The divide-and-conquer algorithm can be implemented in many ways. For
single processor operation, it does not matter if the algorithm is recursive
or not. However, if the algorithm is implemented in parallel, an iterative
algorithm is a better method of choice, since every part of an iteration step
can be done in parallel.

From the divide-and-conquer algorithm, it follows that by successive
application, the number of steps to construct the FFT is s = log2N . We
will denote every step in the algorithm by F s. Each step, F s, in the iterative
algorithm is an update of the array with the transformed elements. However,
if we investigate the flow chart of the data in Figure 4.2, we see that the
input array is in a different order. This follows from the ordering via the
separation of the even and odd components of the vector. The type of
ordering is the so-called bit reversal step.

If the place k of an element in the array f is written in binary form, i.e.
fk = fas−1as−2...a1a0 , with

k =

s−1∑

j=0

aj2
j

then by bit reversal the component fas−1as−2...a1a0 is moved to place
a0a1 . . . as−2as−1 in the initial step of algorithm, i.e. F 0.

Example 4.3.5. Let N = 8, then we have:

f0 = f000 → F 0
000 = F 0

0 f4 = f100 → F 0
001 = F 0

1

f1 = f001 → F 0
100 = F 0

4 f5 = f101 → F 0
101 = F 0

5

f2 = f010 → F 0
010 = F 0

2 f6 = f110 → F 0
011 = F 0

3

f3 = f011 → F 0
110 = F 0

6 f7 = f111 → F 0
111 = F 0

7

and so the initialisation step leads to the array:

F 0 = [f0, f4, f2, f6, f1, f5, f3, f7].

Now, the array is well ordered to start the procedure to compute the DFT
by the divide-and-conquer algorithm. The bit reversal and the combination
by the divide-and-conquer strategy together are known as the FFT. If the
bit-reversal is the initialisation step, then the algorithm is referred to as the
Cooley-Tukey algorithm. This algorithm is a direct implementation of the
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divide-and-conquer algorithm. In each step two components in the array are
combined and stored in the new array.

Basically, each combination is done by a butterfly pattern as illustrated
in Figure 4.3. The butterfly patterns present nicely the combination of two

F s−1
n

F s−1
k+2s−1

F s
n F s

n+2s−1

Figure 4.3: Illustration of the combination of two components of the array
at level s− 1 into level s.

elements from step s − 1 into two new elements in level s. These butterfly
patterns already occur in Figures 4.1 and 4.2. In this setting, the arrays
G0, G1 defined in equations (4.36) and (4.37) and Hp in equation (4.40)
are organised into F s

n. For example one butterfly corresponding to equation
(4.36) is presented in Figure 4.4 with the relation to F s.

F 2
1 = G0

1
F 2

5 = G1
1

F 3
1 F 3

5

Figure 4.4: Illustration of the combination of two components of G into F
from equation (4.36)
.

Remark 4.3.6. Note that in contrast to the arrays G0, G1 and Hp, the size
of the arrays F s is always N . At level s = 1 for N = 8, the structure of the
array F s reads:

F 1 = [H0
0 ,H

0
1 ,H

2
0 ,H

2
1 ,H

1
0 ,H

1
1 ,H

3
0 ,H

3
1 ]
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and for s = 2 it reads:

F 2 = [G0
0, G

0
1, G

0
2, G

0
3, G

0
0, G

1
1, G

1
2, G

1
3]

The last step, F 3, is the final transform.

The iterative algorithm is presented in Algorithm 2. The butterfly

Algorithm 2: Cooley-Tukey algorithm

for s← 1 to log2N do1

W ← 12

Ws ← exp(2πi
2s )3

for j ← 0 to 2s−1 − 1 do4

for n← j to N − 1 step 2s do5

u1 ← F s−1
n6

u2 ←WF s−1
n+2s−17

F s
n ← u1 + u28

F s
n+2s−1 ← u1 − u29

endfor10

W ←WWs11

endfor12

endfor13

patterns are combined together in diagram 4.5 for N = 8.

Example 4.3.7. We will now explain the flow pattern of Figure 4.5 and
Algorithm 2. Consider the DFT of the vector f = [1, 4, 2i, 3], so N = 4.
Algorithm 2 for this vector implies:

f 1 4 2i 3

F 0 1 2i 4 3
F 1 1 + 2i 1− 2i 7 1
F 2 8 + 2i 1− i −6 + 2i 1− 3i

4.3.3 The Gentleman-Sande algorithm

A different algorithm to compute the DFT is the Gentleman-Sande algo-
rithm. This algorithm is very similar to the Cooley-Tukey algorithm, but
the bit-reversal is not applied at the start of the algorithm. This algorithm
is also used to compute the inverse DFT which can be seen as a transpose
of the original DFT. Furthermore the Gentleman-Sande algorithm is easy
to derive parallel codes, because the bit-reversal procedure is omitted.

The first step is now the combination of the elements fk and fk+N/2 into

F̃ 1
k and F̃ 1

k+1. The combination is again done by butterfly patterns, but
the combination equation is different. The Gentleman-Sande algorithm is
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f0

Bit−reversal

f1 f2 f3 f4 f5 f6 f7

F 0
0 F 0

1 F 0
2 F 0

3 F 0
4 F 0

5 F 0
6 F 0

7

F 1
0 F 1

1 F 1
2 F 1

3 F 1
4 F 1

5 F 1
6 F 1

7

F 2
0 F 2

1 F 2
2 F 2

3 F 2
4 F 2

5 F 2
6 F 2

7

F 3
0 F 3

1 F 3
2 F 3

3 F 3
4 F 3

5 F 3
6 F 3

7

Figure 4.5: Pattern of the data-flow in the iterative divide-and-conquer
algorithm for N = 8.
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presented in Algorithm 3 and the flow chart for N = 8 is presented in Figure
4.6.

Algorithm 3: Gentleman-Sande algorithm

for s← 1 to log2N do1

q ← log2N − s+ 12

W ← 13

Wq ← exp(2πi
2q )4

for j ← 0 to 2q−1 − 1 do5

for n← j to 2q − 1 step 2s do6

u1 ← F s−1
n7

u2 ← F s−1
n+2q−18

F s
n ← u1 + u29

F s
n+2q−1 ← W (u1 − u2)10

endfor11

W ←WWq12

endfor13

endfor14

If the Gentleman-Sande Algorithm 3 is compared to the Cooley-Tukey
Algorithm 2 then there are similarities but there are also two major distinc-
tions (besides the bit-reversal). First the traverse to the coefficients is in
opposite direction: s runs from 1 to log2N and q from log2N to 1. Fur-
thermore the multiplication with the twiddle factor in the Cooley-Tukey
algorithm is different compared to the Gentleman-Sande algorithm.

The similarity is the result of the two algorithms. We can easily see that
in the final step in the Gentleman-Sande algorithm, F̃ s

n is the bit-reversed
transformed vector resulting from the Cooley-Tukey algorithm. For example
with N = 8 and n = 3, we find according to Figure 4.6 and Algorithm 3:

F̃ 3
3 = W−2

2 (F̃ 2
2 − F̃ 2

3 )

= W−2
2

(
W 0

4

(
F̃ 1

0 − F̃ 1
2

)
−W−1

4

(
F̃ 1

1 − F̃ 1
3

))

= W−2
2

(
W 0

4

(
F̃ 0

0 + F̃ 0
4 − F̃ 0

2 − F̃ 0
6

))

−W−2
2

(
W−1

4

(
F̃ 0

1 + F̃ 0
3 − F̃ 0

3 − F̃ 0
7

))

= f0 − if1 − f2 + if3 + f4 − if5 − f6 + if7
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since W−2
2 = W 0

4 = 1 and W−1
4 = i. The Cooley-Tukey Algorithm 2 gives:

F 3
6 = F 2

2 −W−2
8 F 2

6

=
(
F 1

0 −W 0
4F

1
2

)
−W−2

8

(
F 1

4 −W−4
4 F 1

6

)

=
((
F 0

0 +W 0
2F

0
1

)
−W 0

4

(
F 0

2 +W 2
2F

0
3

))

−W−2
8

((
F 0

4 +W 4
2F

0
5

)
−W−4

4

(
F 0

6 +W 6
2F

0
7

))

= f0 − if1 − f2 + if3 + f4 − if5 − f6 + if7

since W−4
4 = 1 and W−2

8 = i. Hence F̃3 = F6 and vice-versa. Hence, if for
some reason, a bit-reversal procedure is too expensive, the Gentleman-Sande
algorithm is an option to use. It is obvious that the total complexity of both
algorithms is the same. We will now continue with the parallelisation of the
FFT and its multi-dimensional counterpart.

f0 f1 f2 f3 f4 f5 f6 f7

F̃ 0
0 F̃ 0

1 F̃ 0
2 F̃ 0

3 F̃ 0
4 F̃ 0

5 F̃ 0
6 F̃ 0

7

F̃ 1
0 F̃ 1

1 F̃ 1
2 F̃ 1

3 F̃ 1
4 F̃ 1

5 F̃ 1
6 F̃ 1

7

F̃ 2
0 F̃ 2

1 F̃ 2
2 F̃ 2

3 F̃ 2
4 F̃ 2

5 F̃ 2
6 F̃ 2

7

F̃ 3
0 F̃ 3

1 F̃ 3
2 F̃ 3

3 F̃ 3
4 F̃ 3

5 F̃ 3
6 F̃ 3

7

Figure 4.6: Flow chart of the Gentleman-Sande algorithm.

4.3.4 Parallelisation in general

Both the Cooley-Tukey algorithm and the Gentleman-Sande algorithm can
be used in parallel. But first of all, some topics on parallelisation should be
considered to make the proper choice in the parallelisation. Our aim is to
solve (4.30). The first aim is to climb into the dimensions and thereafter to
increase the speed.
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Parallel computer architectures have been developing and changing rapidly.
Since processors are much faster nowadays than a decade ago, the approach
to parallelisation is different and depends on the structure of the parallel
computer architecture. An algorithm for a system with many processors
and a large shared memory is different from an algorithm for a so-called
cluster of computers., i.e. a set of computers connected via a network or the
Internet. The algorithms are not interchangeable in general.

Example 4.3.8. A state-of-the-art sequential algorithm (i.e. an algorithm
that can run on only one processor) is developed to store variables in the
memory and to recall them later. However, a parallel computer architecture
does not know where the stored values exist in the memory and other proces-
sors have to seek the variable. Therefore, many state-of-the-art sequential
algorithms fail to work efficiently on a parallel computer architecture.

There are two obvious reasons why an algorithm and/or parallel system
may perform unsatisfactorily: load imbalance and communication overhead.
Load imbalance means that some processors have to do much more work
than most of the others. In this case, most processors have to wait for others
to finish their computations before a data exchange can be performed. A
purely sequential algorithm as described in Example 4.3.8 used in a parallel
fashion may produce extreme load imbalance as only one processor is busy
in that case.

Remark 4.3.9. For architectures with many processors (clusters), in general,
it does not harm if some processors have less computational work to do than
the average. However, it is crucial for the performance of the algorithm if
one (or few) processors have to do much more computational work than the
average. Then most of the processors will remain idle and have to wait for
the overloaded ones to finish their parts of the computation.

Communication overhead means that the communication and data trans-
fer between the processors takes too much time compared to the effective
computing time. This overhead will even lead to slow-down instead of speed-
up when more and more processors are used. In the high-dimensional case,
the communication overhead is a reason that the performance of a parallel
algorithm is bad, because the size of the discrete solution is running out
of the memory. Therefore, developing an algorithm that can be divided in
equivalent parts, such that each part has a minimum of data transfer, is the
best option.

A grid partition is a suitable solution to reduce the demand for memory
of a large problem, in particular, for the partial differential equation. If
there are Q processors with a sufficient amount of memory, then a grid
can be divided in Q sub-problems. Each sub-grid has different boundaries
and they share the boundaries with other sub-grids. By advanced iterative
methods, the problems are solved on each sub-grid and the necessary data
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is transferred to other processors. The transmission is simultaneous and
therefore the communication overhead is minimised.

The discrete Fourier transform, however, represents the computation of
a large summation. Each element in the new vector depends on all elements
from the original vector. Therefore, a straight-forward grid partition is not
a proper choice, since any processor has to send the information to every
other processor and a single processor has to receive the data from every
other processor. It seems that the FFT can only work with communication.
Hence we have to take care of the communication overhead.

4.3.5 Parallelisation of the FFT

We will now focus on the parallelisation of the Gentleman-Sande algorithm.
The Cooley-Tukey algorithm is also suitable for parallelisation, but will be
discussed later.

Consider again the flow chart for N = 8 and the case that we have
two processors. We can send the original vector to the processors in pairs
of two: Hence f0, f1, f2, f3 to processor 0, and f4, f5, f5, f7 to processor 1.
Then the flow chart in Figure 4.7 shows that in the first level, processor 0
and processor 1 have to communicate their data. In the second and last
steps, there is no communication.

We can easily generalise N = 8 in Figure 4.7 to N being a general power
of two. If there are Q processors available (Q is a power of 2), then log2N/Q
steps can be performed without communication. This part of the algorithm
is the most efficient part of the complete parallel process.

In equation (4.45) we derived that the order of elementary computations
is N log2N . If Q processors are available then the complexity of the trans-
form itself isM = 2N log2(N)/Q. Now, we focus on the timing of the data
transmission between the processors. First there is the start-up time for a
single message, tα and secondly the time needed to send a word per message,
tβ. Each processor has to send one message per stage and there are log2(Q)
stages. Every message consists of N/Q words per message. This means that
the start-up time is tα log2(Q) and the transmission cost is tβN log2(Q)/Q.
We see that if tβ increases, the communication time will dominate the total
time. In fact, in the multi-dimensional case, the time tβ is the important
factor, because the size of the data is dependent of the vector size.

Another approach is to benefit from both the Gentleman-Sande algo-
rithm and the Cooley-Tukey algorithm. We start with the distribution of
the vector points according to the bit-reversal process. This is called a cyclic
distribution. We then have components f0 and f4 on processor 0, f1 and
f5 on processor 1 and so on. In fact this is the start of the Cooley-Tukey
algorithm. Then after log2(N/Q) steps we perform again a bit-reversal or
transpose of the vector and we continue with the Gentleman-Sande algo-
rithm.
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Proc 0 Proc 1

f0 f1 f2 f3 f4 f5 f6 f7

F̃ 0
0 F̃ 0

1 F̃ 0
2 F̃ 0

3 F̃ 0
4 F̃ 0

5 F̃ 0
6 F̃ 0

7

F̃ 1
0 F̃ 1

1 F̃ 1
2 F̃ 1

3 F̃ 1
4 F̃ 1

5 F̃ 1
6 F̃ 1

7

F̃ 2
0 F̃ 2

1 F̃ 2
2 F̃ 2

3 F̃ 2
4 F̃ 2

5 F̃ 2
6 F̃ 2

7

F̃ 3
0 F̃ 3

1 F̃ 3
2 F̃ 3

3 F̃ 3
4 F̃ 3

5 F̃ 3
6 F̃ 3

7

Figure 4.7: Flow chart of the Gentleman-Sande algorithm over two proces-
sors.

It is obvious that the computational part of this algorithm is the same
as the standard parallelised Gentleman-Sande algorithm. However, the dif-
ference lies in the communication. Now, there is only a communication step
after log2(Q) steps. Note that for this algorithm N > Q2, which is a common
condition. If this condition is violated, then more reversals via communica-
tion are necessary to force all butterfly computations to stay local.

Comparing both algorithms, we see that the combined strategy sends
fewer data overall, but sends (Q−1)/ log2Q times as many messages. Thus,
in the non-overlapping case, one expects the combined algorithm to do well
in a low latency, high bandwidth environment, or when N is very large
and Q small, and the algorithm described in Figure 4.8 does well in a high
latency, low bandwidth environment, or when N is not as large but Q is
large.

For a radically different way to parallelise the one-dimensional FFT,
which uses the Fast Multi-pole Method to lower the communication needed
when one insists on sorted inputs and outputs, see [17, 56].
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Proc 0 Proc 1

f0 f4 f2 f6 f1 f5 f3 f7

F 0
0 F 0

1 F 0
2 F 0

3 F 0
4 F 0

5 F 0
6 F 0

7

F 1
0 F 1

1 F 1
2 F 1

3 F 1
4 F 1

5 F 1
6 F 1

7
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0 F̃ 1

1 F̃ 1
2 F̃ 1

3 F̃ 1
4 F̃ 1

5 F̃ 1
6 F̃ 1

7

F̃ 2
0 F̃ 2

1 F̃ 2
2 F̃ 2

3 F̃ 2
4 F̃ 2

5 F̃ 2
6 F̃ 2

7

F̃ 3
0 F̃ 3

1 F̃ 3
2 F̃ 3

3 F̃ 3
4 F̃ 3

5 F̃ 3
6 F̃ 3

7

Figure 4.8: Flow chart of the combined algorithm over two processors with
bit-reversal after logQ steps.

4.3.6 The FFT in more dimensions

FFTs in two or three dimensions are defined as one-dimensional FFTs for
the vectors in all dimensions. We will discuss the two-dimensional FFT in
some detail, and the three-dimensional case is analogous. A two-dimensional
FFT requires one-dimensional FFTs on all rows and on all columns. Again,
data layout is the main issue. In some applications, the data layout will be
constrained by other parts of the application. For example, if the input is
represented in a skewed layout, in which each processor owns 1/Q of every
row and column, it may be better to redistribute the data before starting
the FFT.

A straightforward implementation of a parallel two-dimensional FFT is
based on a two-dimensional block layout. In fact, this is a special case of

108



4.3. The fast Fourier transform

the grid partitioning described in Section 4.3.4. For example, if 16 pro-
cessors are available, then the processors can be organised as presented in
Table 4.2. Since the elements of the input data can be organised in a ma-

Table 4.2: Processor ordering following the grid partitioning.

Proc 0 Proc 1 Proc 2 Proc 3

Proc 4 Proc 5 Proc 6 Proc 7

Proc 8 Proc 9 Proc 10 Proc 11

Proc 12 Proc 13 Proc 14 Proc 15

trix, it is easy to see that the elements f0,0 . . . , f0,3 are sent to processor
0, f0,4 . . . , f0,7 to processor 1, f4,0 . . . , f7,0 to processor 4, etc. In each pro-
cessor the Gentleman-Sande algorithm can be applied. Then the data is
bit-reversed and sent along the direction. For example, as soon as processor
0 is ready, this processor will sent data in x−bit reversed order to processor
4 and in y−bit reversed order to processor 1. It is easy to see that the
communication overhead is larger then. The communication between the
processors will increase if d and N increase and Q stays constant.

As mentioned earlier, the d−dimensional case is entirely analogous to
the two-dimensional case. One can imagine using a d−dimensional blocked
layout on a processor grid with Q1/d on each row of the grid. Note that the
d dimensions need not be identical for the algorithm to work correctly.

Summarising the parallelisation for a multi-dimensional FFT, we con-
clude, that the parallelisation of the FFT itself requires substantial commu-
nication. Since communication is not an option for high-dimensional option
pricing problems as large messages has to be sent and received, we will fo-
cus on a redistribution of the data by the use of the divide-and-conquer
strategy.

4.3.7 Parallelisation of the CONV method

After this discussion of the parallelisation of the FFT itself, we will now
focus on the underlying problem stated in equation (4.30):

V (t,xm) =
e−r(T−t)

(2π)d
(−1)mDinv

d [ϕnDd {ΦkGk}n]
m
.

We can replace the D and Dinv by the parallel versions of either the
Gentleman-Sande algorithm or the combined algorithm. The curse of di-
mensionality forces us to parallelise the problem to make the problem man-
ageable. This is a different issue for parallelisation than the speed-up. The
amount of data communication suffers from the curse of dimensionality as
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well. As shown in the previous section, a multi-dimensional FFT requires
more transpose or bit-reversals operations than lower dimensional FFTs.
Secondly, the data-flow to communicate will be extensively great (i.e. pos-
sibly in orders of gigabytes per communication step).

Thirdly, the multiplication with the characteristic function is a difficult
operation to handle in the parallel setting. Due to the presence of correlation
coefficients, the value of the characteristic function is dependent on every
underlying coordinate. A straightforward choice is to compute the entire
characteristic function in a d− dimensional loop on every processor. This
will certainly slow down the complete computation and is, therefore, not a
good option.

Finally, the presence of the correlated data after multiplication with ϕ
is also problematic, since the inverse transform has to be taken too. For
European-style option contracts the final outcome of the inverse transform
can be only one point on each processor. The communication a posteriori
then consists of sending only Q numbers from the processors to the central
processor.

These issues force us to apply the divided-and-conquer strategy directly
to the entire problem. Consider first the one-dimensional version of equation
(4.30):

Hm =
N−1∑

n=0

ϕnΦ̂nW
mn
N , (4.46)

where we omit the discounting factor, for simplicity. As mentioned, we
compute (4.46) as the combination of two sums of size M = N/2 with the
even and odd points respectively:

Hm =

M−1∑

n=0

ϕ2nΦ̂2nW
2nm
N +

M−1∑

n=0

ϕ2n+1Φ̂2n+1W
(2n+1)m
N

=

M−1∑

n=0

ϕ2nΦ̂2nW
nm
M +Wm

N

M−1∑

n=0

ϕ2n+1Φ̂2n+1W
nm
M .

(4.47)

Now the even and odd inner functions Φ̂2n and Φ̂2n+1 are treated in the
same way:

Φ̂2n =
N−1∑

k=0

GkΦkW
2nk
N ,

=

M−1∑

k=0

GkΦkW
nk
M +

N−1∑

k=M

GkΦkW
nk
M

=

M−1∑

k=0

GkΦkW
nk
M +W nM

M

M−1∑

k=0

Gk+MΦk+MW
nk
M , (4.48)
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and for the odd elements:

Φ̂2n+1 =
M−1∑

k=0

GkΦkW
k
NW

nk
M +WM

N W nM
M

M−1∑

k=0

Gk+MΦk+MW
k
NW

nk
M . (4.49)

We observe that (4.48) and (4.49) are again sums of two DFTs of size N/2.
When the splittings (4.47), (4.48) and (4.49) are combined, we find the
one-dimensional partitioned version of equation (4.46). In contrast to the
divided-and-conquer strategy, we observe that the division is in four parts
instead of two.

If the divide-and-conquer strategy is applied β times, with β a power of
two then the size of the DFTs isM = β−1N . The points used in the splitting
of the inverse transform are given by βn + q, with q ∈ [0, β − 1]. So, the

multiple partitioned version of equation (4.46) reads, using W βnm
N = W nm

M

by the Cancellation Lemma 4.3.2 of the twiddle factors.:

Hm =

β−1∑

q=0

M−1∑

n=0

ϕβn+qΦ̂βn+qW
m(βn+q)
N =

β−1∑

q=0

Wmq
N

M−1∑

n=0

ϕβn+qΦ̂βn+qW
mn
M .

(4.50)
The partitioning into the odd and even parts can now be included:

Φ̂βn+q =
N−1∑

k=0

ΦkGkW
−(βn+q)k
N

=

β−1∑

p=0

M−1∑

k=0

Φk+pMGk+pMW
−(βn+q)(k+pM)
N

=

β−1∑

p=0

W−pq
β

M−1∑

k=0

Φk+pMGk+pMW
−nk
M W−qk

N ,

(4.51)

where we used

W−βnpM
N = e2πinp = 1 and W−pqM

N = W−pq
β ,

following from the Cancellation Lemma 4.3.2 and the Halving Theorem
4.3.3.

Combining (4.50) and (4.51), we obtain the one-dimensional multiple
split version of equation (4.46):

Hm =

β−1∑

q=0

Wmq
N

M−1∑

n=0

ϕβn+qW
mn
M

β−1∑

p=0

W−pq
β

M−1∑

k=0

Φk+pMGk+pMW
−nk
M W−qk

N

=

β−1∑

p=0

β−1∑

q=0

W−pq
β Wmq

N Dinv
(
ϕβn+qD

[
Φk+pMGk+pMW

−qk
N

])
.

(4.52)
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This partitioning can be generalised to the multi-dimensional case. We
then have a partitioning vector β containing βj-parts for each coordinate
j. The points in the outer transform (4.50) are represented by βn + q =
(β1n1 + q1, . . . , βdnd + qd). The points of the contract function addressed
in (4.51) are represented by k + pM = (k1 + p1M1, . . . , kd + pdMd). When
using the multi-dimensional summation, the multiple partitioned version of
equation (4.30) reads:

V (t,x) =
e−r(T−t)

(2π)d

β−1∑

p=0

β−1∑

q=0

W−pq

β Wmq
N Dinv

d

[
ϕβn+qDd

{
Φk+pMGk+pMW−qk

N

}]
.

(4.53)

We see that if one of the coordinates is split into two parts, i.e.
βk = 2, βj 6=k = 1, the computation of equation (4.53) would be a combi-

nation of 4 DFTs of size Nk
2

∏d
j=1,j 6=kNj. If the same coordinate would be

partitioned again, we would deal with 16 DFTs of size Nk
4

∏d
j=1,j 6=kNj . The

parallel efficiency is low in this case, as the number of processors needed
grows quadratically with βj . Therefore, we rewrite equation (4.53) as,

V (t,x) =
e−r(T−t)

(2π)d

β−1∑

q=0

Wmq
N Dinv

d

[
ϕβn+qDd

{
β−1∑

p=0

Φk+pMGk+pMW−qk
N W−pq

β

}]
.

(4.54)

In this case the computations are partitioned over the q-sum into B =∏d
j=1 βj parts. Each processor now has to compute the p parts of the

contract function. The summation over p could also be done in parallel
with communication among the processors. As mentioned earlier, however,
the drawback of allowing communication for high-dimensional problems is
the need to transfer very large vectors from one processor to another. We
certainly need the communication when solving early exercise options in
parallel, but not for European options. So, early exercise options would be
parallelised efficiently on a parallel machine with some form of shared mem-
ory. An alternative to this type of parallelisation could be the sparse grid
method for which parallelisation is straightforward. We focus on the version
of this parallel approach without any communication and solve European-
style options with it.

4.3.8 Complexity analysis

We now evaluate the parallelisation technique to solve equation (4.30) by a
complexity analysis, and first briefly summarise the procedure to solve (4.30)
in Algorithm 4.

The construction of the contract function is a significantly faster proce-
dure than the computation of the two FFTs and the multiplication by the
characteristic function. We distinguish three portions of time consumption
during the solution process of European options:
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Algorithm 4: Multi-dimensional CONV-method

Compute the contract function on the tensor-product grid1

Multiply the contract function by the function Gk2

Take the multi-dimensional FFT3

Multiply the result by the characteristic function4

Take the multi-dimensional inverse FFT5

Multiply it by the discount factor.6

For Bermudan options: Take the maximum of this value and the7

contract function at tn. Repeat the procedure from step 2 until t0 is
reached

• Tpay is the time needed to construct the contract function including

the multiplication with the function Gk and W−qk
N in (4.54).

• Tfour is the time in steps 3 to 6 of the algorithm.

• Tadd is the additional time needed for starting the computation, read-
ing and writing files.

We assume here that Tadd is negligible. The total time needed to compute
equation (4.30) is then Ttot ≈ Tpay +Tfour. We further assume that Tfour =
ATpay. If technique (4.54) is used and we partition the problem in B parts,
the computational time per processor reads,

Ttot,split = Tpay +
1

B
Tfour =

A+B

B
Tpay, (4.55)

with B =
∏d

j=1 βj . If there are Q identical processors available, then the
parts B can be distributed over the Q processors. Ideally Q is a divisor
of B. The number of parallel processes is therefore equal to ⌈BQ⌉ and the
computational time reads:

Ttot,split =

⌈
B

Q

⌉
A+B

B
Tpay (4.56)

In our applications, typically, A ∈ [4, 12] for B = 1.

4.3.9 Parallelisation of sparse grids

The partitioning of equation (4.30) to get (4.54) is not sufficient to deal
with the curse of dimensionality. It helps to get problems of moderate size
into the memory or to speed up the computation of medium-sized problems.
However, the CONV method is just a quadrature technique and hence it
can be combined with the sparse grid technique [45, 20, 55]. The sparse
grid formulation from Section 3.3 can be used for the solution, where we
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need a minimum number of four grid points per coordinate, because the
FFT equals zero if N = 2 in one of the directions. Since the FFT itself
is optimal if N is a power of two, we require nf > 3. Hence, ci > 2 or
b > 3 (See Section 3.3.4). The parallelisation of the sparse grid technique is
straightforward. Every problem is independent of the others and therefore
the number of processors is not an issue.

If, however, a sub-problem does not fit into the memory, we addition-
ally have to make use of the parallelisation strategy from Section 4.3.7,
partitioning the multi-dimensional CONV method for all the sub-problems
in a sparse grid layer. Let’s consider, as an example, a seven-dimensional
problem with nc = 10 and b = 2. This problem requires 228 grid points
for the sub-problems in the top layer. The total number of sub-problems
in that layer is 1716, but these sub-problems need to be partitioned once
according to the divide-and-conquer strategy. Therefore, we deal with 3432
sub-problems of roughly 227 points. The full grid problem would require 270-
grid points (243 GB), which is infeasible. The overall sparse grid complexity
is 239-points, subdivided into 5147 sub-problems.

For a single-asset option with the asset modelled by geometric Brow-
nian motion a second order full grid convergence was derived in [33]. We
assume an error of O(

∑d
j=1 ∆x2

j) for the multi-dimensional problem. For
the sparse grid integration technique, Gerstner [20] showed that the order of

convergence is of O(∆x2
(
log
(
∆x−1

))d−1
), for numerical integration prob-

lems with bounded mixed derivatives, similar to the error approximation of
the PDE method (3.23). The accuracy for the sparse grid case depending
on the maximum number of grid points in one direction (Nc = 2nc) can be
related “globally” to the number of grid points Nj = 2nf in the full grid
case, as follows:

Cf2−2nf = Cs2
−2ncnd−1

c , (4.57)

with constants Cf and Cs. The solution to this equation is given by:

nc = exp

(
−L

(
− ln 4

d− 1
eD
)
−D

)
,

D =
−nf ln 4 + lnCf − lnCs

d− 1

and L is the Lambert W function2. With this expression, we can compute
the required number of grid points for a sparse grid computation to mimic
a certain full grid problem with grid size nf , given the desired accuracy ε,
constant Cf and number nf and the upper-bound of Cs. The constants Cf

and Cs can be determined from a small-sized experiment taking into account
that especially Cs is problem dependent.

2The Lambert W function is the solution of L(x)eL(x) = x.
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4.4 Numerical experiments

4.4.1 Full grid experiments

We evaluate the CPU-times of the parallel CONV method for some multi-
dimensional experiments on tensor-product grids. We first evaluate the op-
tion on the geometric average for which we compare the numerical result
with an analytic solution [4]. This solution can be obtained by the use of

a coordinate transformation y =
∏d

j=1 e
xj
d , see Section 1.4.2. In Table 4.3,

the prices for the four-dimensional call option on the geometric average of
the assets are presented for a different number of grid points. The first
column in Table 4.3 represents the number of grid points per coordinate
Nj = 2nf , j = 1, . . . , 4. The final computation, nf = 7, requires 4 GB of
memory and has a complexity of 228-points.

The option parameters chosen are r = 0.06, σj = 0.2, δj = 0.04, ρjk =
0.25 if j 6= k and T = 1. The strike price is e40, as is S(0).

The desired accuracy of errors being less than e0.01 is achieved for
nf = 5. We observe a second order convergence on the finer grids. The right-
side part of Table 4.3 presents timings on a parallel machine, which consists
of nodes with two processors each, having 8 GB of memory. Parameter A,
as in (4.55) is also given.

Table 4.3: Option prices for the four-dimensional geometric average call
option with the parallel timings (in sec.). Last column gives A (4.55).

d = 4 Call on the geometric average CPU times with eq. (4.54)

nf Price Error Ratio B=1 B=2 B=4 B=16 A

3 1.962 2.0 × 10−1 5.3 <0.1 <0.1 <0.1 <0.1
4 2.128 3.8 × 10−2 5.4 <0.1 <0.1 <0.1 <0.1
5 2.156 9.3 × 10−3 4.1 0.5 0.2 0.1 <0.1 4.5
6 2.163 2.3 × 10−3 4.0 9.4 4.9 3.0 1.6 6.2
7 2.165 5.8 × 10−4 4.0 164.1 85.1 45.2 25.2 7.1

Based on these results we conclude that the partitioning strategy reduces
total CPU time well. Parallel efficiency would improve on finer grids and in
higher dimensions.

We now consider problems that require more than the maximum avail-
able physical memory per processor. The parallel partitioning is then manda-
tory. In Table 4.4, we present the prices of a digital put on the geometric
average of five assets. As the contract function of the digital option (it will
pay an amount of e1 when the geometric average is less than the strike price

in our experiment) has a discontinuity along the hyper-surface
∏d

j=1 e
xj
d = 1,
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it is expected that this leads to only first order error convergence. Table 4.4
indeed displays first order convergence (again the exact solution is known
for the digital put on the geometric average) and we see that a grid size with
nf = 6 is not sufficient to reach the desired accuracy.

Table 4.5 presents the solution of a 6D standard basket put with equally
weighted assets (ci = 1

6 ). The error convergence is irregular for this contract
function, but at least of second order. The size of nf = 5 is again sufficient
to reach the desired accuracy. The CPU times for B = 32 in Tables 4.4 and
4.5 are estimated times when the number of processors Q is equal to the
number of parts B.

Table 4.4: Option prices for the 5D geometric average digital put, plus
parallel timing results and parameter A from (4.55).

d = 5 Digital put on the geom. average CPU times

nf Price Error Ratio B=4 B=32 A

2 0.81 3.36 × 10−1 1.49 <0.1 <0.1
3 0.32 1.49 × 10−1 2.26 <0.1 <0.1
4 0.40 7.43 × 10−2 2.00 0.2 0.1 4.0
5 0.43 3.71 × 10−2 2.00 1.8 1.1 4.5
6 0.45 1.86 × 10−2 2.00 295.6 91.1 8.7

Table 4.5: Option prices for the 6D basket put, plus parallel timing results.

d = 6 Basket put CPU times

nf Price Error Ratio B=4 B=32

2 1.26 1.25 <0.01 <0.01
3 1.52 2.63 × 10−1 4.7 0.09 <0.01
4 1.51 1.70 × 10−2 15.5 5.02 1.2
5 1.50 2.62 × 10−3 6.5 334.34 111.1

Finally, we also present the results of the hedge parameters. These
equations can be discretised similarly to (4.30) into:

∆k(t,xm) = −e
−r(T−t)

(2π)dSk

d∏

j=1

(−1)mjDinv
d [iωnk

φnDd {VkGk}] , (4.58)

Γk(t,xm) =
e−r(T−t)

(2π)dS2
k

d∏

j=1

(−1)mjDinv
d

[(
iωnk

+ ω2
nk

)
φnDd {VkGk}

]
. (4.59)

The hedge parameters are presented in Table 4.6.
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Table 4.6: Hedge parameters of a standard 3D,4D and 5D basket call on a
full grid of 2nf points per coordinate.

3D 4D 5D

nf ∆1 error ∆1 error ∆1 error

3 0.1872 0.1369 0.1087
4 0.1866 6.18×10−4 0.1370 8.90×10−4 0.1119 3.29×10−3

5 0.1867 1.68×10−4 0.1371 1.16×10−4 0.1116 3.40×10−4

6 0.1867 4.30×10−5 0.1372 2.22×10−5 0.1116 1.90×10−5

4.4.2 Sparse grid computations

In this section, we will describe numerical experiments with the sparse grid
technique to solve multi-asset options. The sparse grids technique should
be chosen if the required memory or the required number of processors
for the partitioned full grid version is just too large. However, as already
mentioned, the efficient use of the sparse grid technique in computational
finance is seriously restricted by the types of multi-asset option contracts
in use. An acceptable accuracy with the sparse grids method can only
be expected if the solution has bounded mixed derivatives. The contract
functions of the examples presented in Tables 4.3, 4.4 and 4.5 do not have
this property. It may be possible to transform a contract function so that
the kink (or discontinuity for a digital option) is aligned with a grid line (see
Chapter 3), but this cannot be done for every contract function. A call or
put option based on the maximum or minimum of the underlying assets has
its non-differentiability on grid lines, see Figure 1.6. It is therefore expected
that these options can be handled well in the sparse grid setting.

In the sparse grid method, we use the CONV algorithm as in the full grid
case. In fact, the sparse grid method can be coded as an outer loop running
over all sub-problems. Within the loop, the CONV method is called with
the desired grid parameters. We developed the algorithm so that if the sub-
problems in the sparse grid method are additionally partitioned as described
in Section 4.3.7. The number of parallel tasks increases to U = NB, where
B is the number of parts of a sub-problem. The algorithm loops over all
tasks U . Every task is sent to a different processor as soon as the processor
is available. The maximum number of tasks in a problem is limited to 231

on a 32-bit machine and 263 on a 64-bit machine. As soon as the problem is
solved for a certain q (see equation (4.54)) and multi-index I, the solution
(an option value) is returned to the master process and summed. After this
task is performed, a new task can be assigned to this processor. This kind
of parallel coding is not straightforward, due to the three different types of
partitioning within the algorithm, but it can be used on a heterogeneous
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cluster.

We now perform numerical experiments with option contracts on the
maximum or minimum of the underlying assets. The option parameters for
these experiments are

• K = 100, T = 1 year, r = 4.5%,.

• σ1 = 0.25, σ2 = 0.35, , σ3 = 0.20, , σ4 = 0.25, , σ5 = 0.20, , σ6 = 0.21
and σ7 = 0.27.

• δ1 = 0.05, δ2 = 0.07, δ3 = 0.04, δ4 = 0.06, δ5 = 0.04, δ6 = 0.03 and
δ7 = 0.02.

• R =




1.00 −0.65 0.25 0.20 0.25 −0.05 0.05
−0.65 1.00 0.50 0.10 0.25 0.11 −0.016
0.25 0.50 1.00 0.37 0.25 0.21 0.076
0.20 0.10 0.37 1.00 0.25 0.27 0.13
0.25 0.25 0.25 0.25 1.00 0.14 −0.04
−0.05 0.11 0.21 0.27 0.14 1.00 0.19
0.05 −0.016 0.076 0.13 −0.04 0.19 1.00




.

with R the matrix with the correlation coefficients ρjk.

We start with the four-dimensional problem and compare the sparse and
the full grid results. The parameters for this experiment are listed above,
where we take the first four subscript entries. In Table 4.7, the results for
the full grid experiment are presented for a European and a Bermudan style
contract. The Bermudan style contract has ten exercise dates during the
lifetime of the option contract. The results are presented for grids with
Nj = 2nf , j = 1, . . . , d points. We see a smooth convergence for this type of
European contract and an accuracy better than e0.01 when nf = 7. For the
Bermudan contract, the convergence ratio is less smooth, but the accuracy
is again satisfactory.

Remark 4.4.1. In order to price American options, based on the present
approach for Bermudan options, there are basically two approaches. One
can compute a Bermudan option with many exercise dates, and thus very
small time steps, as an approximation of an American option, or one can
apply a repeated Richardson extrapolation. These two approaches have
been applied to the univariate case in [33], in which it was shown that the
Richardson extrapolation was superior in terms of accuracy and CPU time.
The convergence of the Bermudan approach with many exercise dates was
only of first order, whereas the Richardson extrapolation was significantly
better than that. However, in [33] a very regular convergence of the pricing
for Bermudan options with the CONV method was achieved by shifting the
grids, so that the option value where the continuation and the payoff values
coincide was placed at a grid point. This was the reason for the accurate
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American options prices in [33]. In the multivariate case, however, it is
not possible anymore to place an “early-exercise-line”, or even a higher-
dimensional entity, completely on a grid line. Therefore we cannot achieve
a regular convergence for Bermudan options and extrapolation cannot be
used to price American options. American multi-asset options are, however,
still uncommon financial contracts nowadays.

Table 4.7: European and Bermudan 4D put option on the maximum of
the underlying assets on a full grid.The Bermudan contract has 10 exercise
dates.

d = 4 European Bermudan

nf price error Ratio price error Ratio

3 0.38 7.38×10−1 0.61 5.06×10−1

4 0.87 2.51×10−1 2.94 0.53 9.25×10−1 0.55
5 1.05 6.82×10−2 3.67 1.87 3.36×10−1 2.75
6 1.10 1.76×10−2 3.88 1.85 2.88×10−2 11.67
7 1.11 4.51×10−3 3.90 1.84 5.37×10−3 5.36

Although the results are satisfactory in the four-dimensional case, the
Bermudan option contract, for example, cannot be computed with nf =
7 in higher-dimensional cases without any form of communication among
the processors. In Section 4.3.9, we derived an expression to compute the
number of grid points Ns = 2nc needed for mimicking the solution with
sparse grid, given the accuracy and the number of grid points Nf = 2nf in
the full grid. The estimate of the number of grid points is very global and we
assume the value of Cf as an upper bound for Cs. If the desired accuracy
is ≈ 10−3, we need in the full grid nf = 8 by applying the convergence
ratio. From the results in Table 4.7, we have with nf = 7 Cf ≈ 74. Solving
equation (4.57), the number of grid points for the sparse grid computation
is nc = 13, to have an accuracy of 10−3. The choice of the base b in the
sparse grid technique has a major influence on the complexity. The CONV
method does not work if one of the coordinates is discretised in only two
points, so b > 2. It is also reasonable for accuracy reasons to use a higher
base [32], for example b = 3 which means at least 8 points per coordinate.
This however has a significant impact on the cost of the method.

In Table 4.8, the results for the put option on the maximum of the
underlying assets are presented in the four- and five-dimensional case and
for European and Bermudan style based on a sparse grid technique with
b = 3. In this table, the first column represents the mimic of the full grid.
With nc = 13, we conclude that the desired accuracy of 10−3 is reached.
The sparse grid method also converges to the same value as the full grid
case (see Table 4.7), although the convergence tends to be of first order and
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Table 4.8: Sparse grid results of a 4D and 5D put option on the maximum
of the assets

European 4D European 5D

nc Price Error Ratio Price Error Ratio

7 1.0488 5.25×10−2 0.7407 3.48×10−2

8 1.0785 2.97×10−2 1.77 0.7696 2.90×10−2 1.20
9 1.0992 2.06×10−2 1.44 0.7875 1.79×10−2 1.62
10 1.1061 6.88×10−3 3.00 0.7967 9.21×10−3 1.94
11 1.1107 4.68×10−3 1.47 0.8015 4.77×10−3 1.93
12 1.1134 2.62×10−3 1.79 0.8035 2.04×10−3 2.34
13 1.1146 1.22×10−3 2.15 0.8046 1.09×10−3 1.34

Bermudan 4D Bermudan 5D

nc Price Error Ratio Price Error Ratio

10 1.830 1.34× 10−2 3.68 1.389 5.65 × 10−2 0.32
11 1.838 5.09× 10−3 2.63 1.380 8.49 × 10−3 6.66
12 1.840 3.18× 10−3 1.60 1.375 5.16 × 10−3 1.65
13 1.841 2.56× 10−3 1.24 1.378 2.24 × 10−3 2.30

irregular. For the five asset problem (right part of Table 4.8), we see the same
behaviour of the four asset problem by means of accuracy and convergence.
Finally, the Bermudan option contract also reaches the desired accuracy
when nc = 13.

Remark 4.4.2. The sparse grid convergence in Table 4.8 is somewhat irregu-
lar. Option pricing problems are typically characterised by payoff functions
that do not have bounded mixed derivatives. The max option, however,
has this feature only along its axes (see Figure 1.6). So, in principle we
would expect the asymptotic theoretical optimal sparse grid convergence
of O(h2(log h)d−1). In Chapter 3, it was however shown, for the multi-
dimensional Poisson equation and a smooth solution that the theoretical
sparse grid convergence was only achieved on relatively fine grids. Here we
have the same situation. For the 4D case of Table 5 we observe significantly
improved sparse grid convergence rates on finer grids. For ns = 14, the
error is 5.0 × 10−4 with convergence ratio 2.43; for ns = 15 we have error
1.9× 10−4 and ratio 2.79, for ns = 16, the error equals 6.0× 10−5, and ratio
3.1, while for ns = 17 the error is 1.8× 10−5 and the ratio is 3.36.

Analogous option contracts are presented in Table 4.9. Also in this table
we see the same convergence and accuracy results. Furthermore in Table
4.10, the sparse grid values of the hedge parameters for a put option on
the minimum are presented. These values have the same behaviour as the
option prices themselves.
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Table 4.9: 4D and 5D sparse grid prices on the maximum or minimum of
the assets

nc 4D Call on maximum 4D Call on minimum 4D Put on minimum

10 25.344 1.01×10−2 0.284 4.12×10−3 24.640 6.67×10−3

11 25.340 4.67×10−3 0.287 2.11×10−3 24.637 3.24×10−3

12 25.341 1.62×10−3 0.288 1.74×10−3 24.639 2.18×10−3

13 25.340 1.07×10−3 0.289 5.50×10−4 24.638 1.37×10−3

nc 5D Call on maximum 5D Call on minimum 5D Put on minimum

10 27.065 1.45×10−2 0.232 4.97×10−3 25.217 1.06×10−2

11 27.059 5.79×10−3 0.234 2.35×10−3 25.214 2.61×10−3

12 27.063 2.99×10−3 0.236 1.84×10−3 25.216 2.38×10−3

13 27.061 1.92×10−3 0.237 8.98×10−4 25.215 1.78×10−3

The interesting point is the CPU time. In Table 4.7, we have an accuracy
of 4.5×10−3 when nf = 7 for the full grid European four-dimensional option.
The CPU time on 16 equivalent processors for the full grid problem (see
Table 4.3) is 25 seconds. We have an accuracy of 4.68 × 10−3 with nc = 11
in Table 6 for the same option, but now in sparse grid case. In Table 4.11,
the parameters are presented for the four-dimensional sparse grid case with
nc = 11. Each row in Table 4.11 represents a layer of the combination
technique with the complexity, value of ℓ and number of sub-problems. The
right part gives the CPU times for each sub-problem of a specific layer, the
layer’s total sequential CPU time and parallel CPU time when 12 CPUs
are used. The total time on a single computer is 124.2 seconds and on a
heterogeneous cluster 11.1 seconds. The efficiency is 11.23, which is high as
12 is the ideal case. Also we see that the CPU time in the sparse grid on 12
CPUs is even lower than the CPU time for the full grid case on 16 CPUs (25
seconds, see Table 4.3). We conclude that the sparse grid technique is an
efficient method to use in parallel on a low number of CPUs. The problem
size of the partitioned full grid is still large. For example, the problem size
of a problem in the top layer of the five-dimensional 213 mimic in Table 4.8
has a total complexity of 225 or 512 MB.

We conclude our sparse grid results with the higher-dimensional exam-
ples of the option contracts on the maximum or minimum of the assets. In
Table 4.12, the results of the sparse grid computation are presented for a
put option on the maximum and minimum of the six or seven underlying
assets. We again see a satisfactory accuracy with nc = 10 and an irregu-
lar convergence. The seven-dimensional sparse grid problem with nc = 10
uses the sparse grid technique as well as the partition technique in Section
4.3.7, because the maximum available memory is 2GB on our heterogeneous
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Table 4.10: Hedge parameters for the 4D put option on the minimum of the
assets in full and sparse grid

Full grid Put on the minimum

nf ∆1 error Γ1 error

5 -0.2232 8.99 × 10−3 9.823 × 10−3 4.12 × 10−4

6 -0.2223 9.91 × 10−4 9.765 × 10−3 5.80 × 10−5

7 -0.2222 9.97 × 10−5 9.751 × 10−3 1.47 × 10−5

Sparse grid Put on the minimum

nc ∆1 error Γ1 error

6 -0.2232 2.38 × 10−3 9.661 × 10−3 1.74 × 10−4

7 -0.2211 2.18 × 10−3 9.672 × 10−3 1.14 × 10−4

8 -0.2222 1.14 × 10−3 9.774 × 10−3 1.01 × 10−4

9 -0.2224 2.14 × 10−4 9.755 × 10−3 1.86 × 10−5

10 -0.2222 1.63 × 10−4 9.752 × 10−3 3.13 × 10−6

Table 4.11: Problem parameters for sparse grid (mimic of the 4D 211 full
grid)

Problem parameters CPU times

j ℓ Complex. #probl Problem Layer time Q=12

1 17 220 165 0.51 82.5 7.3
2 16 219 120 0.24 28.8 2.5
3 15 218 84 0.12 10.1 1.0
4 14 217 56 0.05 2.88 0.3

Tot 425 124.2 11.1

cluster. The problem size of this experiment in the top layer is 4 GB and
therefore it is partitioned with B = 2. Again the base of the sparse grid
technique is set to b = 3. The hedge parameters can also be computed with
the sparse grid technique.

4.5 Conclusions

The multi-dimensional CONV method is a powerful and fast method. It is
able to price multi-asset options of European and early-exercise type under
Lévy price dynamics, including geometric Brownian motion, and to com-
pute the hedge parameters. The partitioning of the method enables us to
distribute some multi-dimensional partitioned parts over a system of paral-
lel computers, which speeds up the computation. Since we chose to avoid
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6D Put on minimum 6D Put on maximum

nc Price Error Ratio Price Error Ratio

7 27.093 1.43×10−1 0.375 2.33×10−2

8 27.183 9.02×10−2 1.58 0.396 2.13×10−2 1.09
9 27.141 4.21×10−2 2.14 0.412 1.50×10−2 1.42
10 27.158 1.73×10−2 2.43 0.420 8.89×10−3 1.69

7D Put on minimum 7D Put on maximum

nc Price Error Ratio Price Error Ratio

7 26.153 1.22×10−1 0.179 1.45×10−2

8 26.217 6.31×10−2 1.93 0.194 1.50×10−2 0.96
9 26.189 2.72×10−2 2.32 0.206 1.14×10−2 1.31
10 26.203 1.34×10−2 2.02 0.213 7.21×10−3 1.58

Table 4.12: Sparse grid results of two types of 6D and 7D European contracts

communication in the parallel system, and thus require some additional
computation, the parallel efficiency is not optimal.

With the help of the sparse grid technique, we can climb in the number
of dimensions of the multi-dimensional contracts. The size of the target
problem depends, of course, on the number of parallel processors that are at
one’s disposal. An important remark is, however, that the basic sparse grid
technique, without any enhancements, can only be successfully applied for
certain contract functions. We show that the min- and max-asset options
exhibit a satisfactory sparse grid convergence. The parallel efficiency of
the sparse grid method is excellent, as each sub-problem can be computed
independently.

For high-dimensional problems it becomes necessary to combine the par-
allel sparse grid method with the parallel version of the CONV method.

A logical next step in our research would be to evaluate the resulting
parallel method on a machine containing a significant amount of parallel
processors.
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Conclusions

Multi-asset option pricing with numerical techniques is a challenging exten-
sion of the numerical pricing techniques for the options on one underlying
asset. The finite difference matrices are extended to a higher dimension-
ality with the use of Kronecker products. The underlying discretisation is
not different from the one-dimensional discretisation, provided a consistent
high-dimensional grid-ordering is adopted. The mixed derivatives in the
multi-dimensional Black-Scholes partial differential equation can be han-
dled as well with Kronecker products with the standard finite differences for
the first derivative with respect to two different coordinates.

The non-differentiability of the contract function is a typical property
of option pricing problems. This requires careful discretisation in space and
time in order to obtain satisfactory accuracy results. Fourth order accurate
space and time discretisations were proposed for the single-asset option,
using spatial grid stretching by means of an analytical coordinate trans-
formation. With the proper choices of grid and stretching parameters, the
fourth order accuracy could be achieved. Important for the applications
is, however, a small discretisation error with only a few grid points. This
was achieved by the techniques proposed with a moderate grid stretching.
Furthermore, we have observed a satisfactory accuracy in the hedge param-
eters and in the solution of early exercise options with and without dividend
payments.

The high-dimensional option pricing problem is not necessarily more
difficult from a mathematical point of view than a low-dimensional prob-
lem. If some special techniques are necessary to obtain accuracy in a
low-dimensional problem, the same techniques can be extended to a high-
dimensional problem in a straightforward way. In particular, we think of
the early exercise solution strategy and the grid stretching.

However, from a computational point of view, the complexity of the
problem seriously increases when the dimensionality increases. This is some-
times called as the curse of dimensionality, i.e. the exponential growth of the
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number of grid points on tensor-product grids,when d increases. On modern
computer systems, the amount of data can become too large to deal with.
Advanced techniques, such as domain decomposition and problem paralleli-
sation, do not solve this feasibility problem satisfactorily. If, for example,
a strategy works nicely for a four-dimensional problem, it may fail for a
six-dimensional problem, due to the computer storage restrictions.

One of the possible solutions for the curse of dimensionality is the sparse
grid technique. The sparse grid mimics the solution on a full grid by combin-
ing the solutions on significantly smaller problems. Because every problem
is independent from all others, parallelisation is straightforward.

The sparse grid technique proposed here, is an extension of the basic
sparse grid technique developed in [10]. The sparse grid technique is gen-
eralised to rectangular grids with different numbers of grid points in each
direction and not necessarily powers of two. With these extensions, the
sparse grid technique is used for pricing multi-asset options with the multi-
dimensional PDE method and the FFT method. The restrictions to the
sparse grid technique are important. The major one being that the mixed
derivatives of the solution should be bounded. Since the final conditions
of the option pricing contracts are typically non-differentiable, this is not
guaranteed.

For pricing basket options with the multi-dimensional Black-Scholes par-
tial differential equation with the sparse grid combination technique, a linear
or a non-linear coordinate transformation can be employed in order to align
the payoff function with a grid line. This alignment improves the conver-
gence of sparse grids significantly. With the coordinate transformations it
is possible to reduce the number of grid points in some coordinates, which
is highly advantageous from a computational point of view. An additional
coordinate stretching function concentrates points in the region around the
exercise price. The effect of grid stretching is mainly significant on these
non-equidistant grids if the maturity time is short (as then steep gradients
in the solution may occur).

For pricing basket options with the multi-dimensional Black-Scholes FFT
based method, the sparse grid technique in combination with the parallel
divide-and-conquer strategy gives a powerful and fast parallel algorithm.
Although the number of grid points is significantly higher than for the PDE
method, the computational speed is higher too. We have shown that the
min- and max-asset options exhibit a satisfactory sparse grid convergence as
these contract functions give rise to solutions with bounded mixed deriva-
tives.

The PDE and the FFT methods are completely different, but compara-
ble. The PDE method is a flexible method. The complexity and thus the
computational time does not increase significantly when applying for exam-
ple early exercise and dividend payments. The computational time of the
FFT method, however, increases substantially in the case of early exercise.
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In one-dimensional problems, the computational speed for early exercise
problems is comparable. However, in the multi-dimensional case, the FFT
is a much faster approach because there is no matrix to construct. Further-
more for the European-style options, there is no time-integration necessary
and a linear system need not be solved for every time step. However, for
certain special “state-dependent” volatility models the PDE method can be
used without a greater computational complication. In summary, still the
FFT method has the greatest potential for the fast and efficient pricing of
higher-dimensional option pricing problems.

Further research to the multi-dimensional option pricing problem is still
necessary. The curse of dimensionality is not completely broken by the
sparse grid technique, due to its serious restrictions. A promising technique
is the principal component analysis [42]. Basically, this technique is a di-
mension reduction for solving problems higher than ten dimensions.

The coordinate transformations are also of serious interest for the FFT
method. If the characteristic function can be transformed, then it may be
possible to align the basket sum along a grid line and use the transformed
characteristic functions in combination with the sparse grid method.

Local volatility models or other asset dependent volatilities and corre-
lations can be implemented into the PDE method straightforwardly. The
Kronecker products themselves are usable linear operations which can also
be used on grid functions. Furthermore, the improvement of the linear solver
in the PDE method is a topic of interest. New iterative solvers may speed
up the computation significantly.
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